浏览全部资源
扫码关注微信
大连大学医学院,辽宁 大连 116622
Published:30 May 2023,
Received:05 October 2022,
Revised:16 March 2023,
扫 描 看 全 文
张淑贤,朱坤,刘双萍.丙戊酸抗胶质瘤的作用机制研究进展 Δ[J].中国药房,2023,34(10):1276-1280.
ZHANG Shuxian,ZHU Kun,LIU Shuangping.Research progress on the mechanism of valproic acid against glioma[J].ZHONGGUO YAOFANG,2023,34(10):1276-1280.
张淑贤,朱坤,刘双萍.丙戊酸抗胶质瘤的作用机制研究进展 Δ[J].中国药房,2023,34(10):1276-1280. DOI: 10.6039/j.issn.1001-0408.2023.10.24.
ZHANG Shuxian,ZHU Kun,LIU Shuangping.Research progress on the mechanism of valproic acid against glioma[J].ZHONGGUO YAOFANG,2023,34(10):1276-1280. DOI: 10.6039/j.issn.1001-0408.2023.10.24.
胶质瘤是中枢神经系统常见的原发性肿瘤。常规治疗方法是手术切除结合放化疗,但常常预后不良。因此,迫切需要在胶质瘤中识别新的潜在靶点并开发更有效的治疗药物。丙戊酸具有组蛋白去乙酰化酶抑制剂性质,已被证实对多种肿瘤有抑制作用。现有研究证实,丙戊酸可通过调控细胞外信号调节激酶/蛋白激酶B(Akt)信号通路、Akt/哺乳动物雷帕霉素靶蛋白等信号通路,以及调节回复引导半胱氨酸丰富蛋白Kazal基元、
O
6
-甲基鸟嘌呤DNA甲基转移酶、核转录因子红系2相关因子2、对氧磷酶2、Smad4、糖原合成酶激酶-3β等蛋白表达水平,进而诱导胶质瘤细胞凋亡和细胞周期阻滞,降低胶质瘤细胞侵袭转移能力,增加胶质瘤细胞放化疗敏感性等多种途径发挥抗肿瘤作用。此外,丙戊酸还可通过抑制胶质瘤干细胞的生长和诱导胶质瘤干细胞的分化提高抗癌药物效果。总之,丙戊酸可通过多靶点作用方式抑制胶质瘤,有可能成为治疗胶质瘤的新型靶向药物。
Gliomas are commonly central nervous system tumors. The conventional treatment is surgical resection combined with chemoradiotherapy, but glioma patients often have a poor prognosis. Therefore, there is an urgent need to identify new potential targets in gliomas and develop more effective treatments. Valproic acid has the properties of histone deacetylase inhibitor, which has been proven to have inhibitory effects on various tumors. It is confirmed that valproic acid could promote apoptosis and cell arrest of glioma cells, inhibit cell invasion and glioma stem cells, increase the sensitivity of glioma cells to radiotherapy and chemotherapy by regulating ERK/Akt signaling pathway, Akt/mTOR signaling pathway, and regulating expression levels of RECK, MGMT, Nrf2, PON2, Smad4, GSK3β and other proteins. In addition, valproic acid can also enhance the effectiveness of anticancer drugs by inhibiting the growth of glioma stem cells and inducing their differentiation. In conclusion, valproic acid can inhibit glioma through multiple targeted actions, and may become a new targeted drug for the treatment of glioma.
丙戊酸胶质瘤细胞凋亡组蛋白去乙酰化酶抑制剂
gliomacell apoptosishistone deacetylase inhibitor
OSTROM Q T,CIOFFI G,WAITE K,et al. CBTRUS statistical report:primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018[J]. Neuro Oncol,2021,23(12 Suppl 2):iii1-iii105.
Brain tumor registry of Japan,2005-2008[J]. Neurol Med Chir(Tokyo),2017,57(Suppl 1):9-102.
POFF A,KOUTNIK A P,EGAN K M,et al. Targeting the Warburg effect for cancer treatment:ketogenic diets for management of glioma[J]. Semin Cancer Biol,2019,56:135-148.
LINZ U. Commentary on Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase Ⅲ study:5-year analysis of the EORTC-NCIC trial(Lancet Oncol. 2009;10:459-466)[J]. Cancer,2010,116(8):1844-1846.
BARKER C A,BISHOP A J,CHANG M,et al. Valproic acid use during radiation therapy for glioblastoma asso-ciated with improved survival[J]. Int J Radiat Oncol Biol Phys,2013,86(3):504-509.
LEE H J,DREYFUS C,DICICCO-BLOOM E. Valproic acid stimulates proliferation of glial precursors during cortical gliogenesis in developing rat[J]. Dev Neurobiol,2016,76(7):780-798.
KIWELER N,WÜNSCH D,WIRTH M,et al. Histone deacetylase inhibitors dysregulate DNA repair proteins and antagonize metastasis-associated processes[J]. J Cancer Res Clin Oncol,2020,146(2):343-356.
OI S,NATSUME A,ITO M,et al. Synergistic induction of NY-ESO-1 antigen expression by a novel histone deacetylase inhibitor,valproic acid,with 5-aza-2′-deoxycytidine in glioma cells[J]. J Neurooncol,2009,92(1):15-22.
SANAEI M,KAVOOSI F. Histone deacetylases and histone deacetylase inhibitors:molecular mechanisms of action in various cancers[J]. Adv Biomed Res,2019,8:63.
WEDEL S,HUDAK L,SEIBEL J M,et al. Inhibitory effects of the HDAC inhibitor valproic acid on prostate cancer growth are enhanced by simultaneous application of the mTOR inhibitor RAD001[J]. Life Sci,2011,88(9/10):418-424.
OSUKA S,TAKANO S,WATANABE S,et al. Valproic acid inhibits angiogenesis in vitro and glioma angiogenesis in vivo in the brain[J]. Neurol Med Chir(Tokyo),2012,52(4):186-193.
PERLA A,FRATINI L,CARDOSO P S,et al. Histone deacetylase inhibitors in pediatric brain cancers:biological activities and therapeutic potential[J]. Front Cell Dev Biol,2020,8:546.
陈恒屹,何勇. 组蛋白去乙酰化酶抑制剂与肿瘤治疗研究进展[J]. 重庆医学,2017,46(30):4280-4282.
谷华伟,刘艳,桑军侠,等. 组蛋白去乙酰化酶抑制剂的研究进展[J]. 中国当代医药,2015,22(16):15-21.
KOUZARIDES T. Chromatin modifications and their function[J]. Cell,2007,128(4):693-705.
ROTH S Y,DENU J M,ALLIS C D. Histone acetyltransferases[J]. Annu Rev Biochem,2001,70:81-120.
KIM E,BISSON W H,LÖHR C V,et al. Histone and non-histone targets of dietary deacetylase inhibitors[J]. Curr Top Med Chem,2016,16(7):714-731.
ZHANG C,LIU S L,YUAN X R,et al. Valproic acid promotes human glioma U87 cells apoptosis and inhibits glycogen synthase kinase-3β through ERK/Akt signaling[J]. Cell Physiol Biochem,2016,39(6):2173-2185.
HAN W,YU F,CAO J C,et al. Valproic acid enhanced apoptosis by promoting autophagy via Akt/mTOR signa-ling in glioma[J]. Cell Transplant,2020,29:963689720981878.
NG C J,WADLEIGH D J,GANGOPADHYAY A,et al. Paraoxonase-2 is a ubiquitously expressed protein with antioxidant properties and is capable of preventing cell-mediated oxidative modification of low density lipoprotein[J]. J Biol Chem,2001,276(48):44444-44449.
TSENG J H,CHEN C Y,CHEN P C,et al. Valproic acid inhibits glioblastoma multiforme cell growth via para-oxonase 2 expression[J]. Oncotarget,2017,8(9):14666-14679.
CHINTALA S K,TONN J C,RAO J S. Matrix metalloproteinases and their biological function in human gliomas[J]. Int J Dev Neurosci,1999,17(5/6):495-502.
CHEN Y,TSAI Y H,TSENG S H. Valproic acid affected the survival and invasiveness of human glioma cells through diverse mechanisms[J]. J Neurooncol,2012,109(1):23-33.
PAPI A,FERRERI A M,ROCCHI P,et al. Epigenetic modifiers as anticancer drugs:effectiveness of valproic acid in neural crest-derived tumor cells[J]. Anticancer Res,2010,30(2):535-540.
LAMOUILLE S,XU J,DERYNCK R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol,2014,15(3):178-196.
YANG Z Y,WANG X H. Valproic acid inhibits glioma and its mechanisms[J]. J Healthc Eng,2022,2022:4985781.
YI Y,HSIEH I Y,HUANG X J,et al. Glioblastoma stem-like cells:characteristics,microenvironment,and therapy[J]. Front Pharmacol,2016,7:477.
RIVA G,CILIBRASI C,BAZZONI R,et al. Valproic acid inhibits proliferation and reduces invasiveness in glioma stem cells through Wnt/β catenin signalling activation[J]. Genes(Basel),2018,9(11):522.
胡军,程妮,钟占强,等. 丙戊酸钠通过EGFR下调CD44表达抑制胶质瘤细胞生长[J]. 现代肿瘤医学,2020,28(3):370-374.
JORDAN M A,WENDELL K,GARDINER S,et al. Mitotic block induced in HeLa cells by low concentrations of paclitaxel(Taxol)results in abnormal mitotic exit and apoptotic cell death[J]. Cancer Res,1996,56(4):816-825.
RIVA G,BARONCHELLI S,PAOLETTA L,et al. In vitro anticancer drug test:a new method emerges from the model of glioma stem cells[J]. Toxicol Rep,2014,1:188-199.
PAN H,WANG H D,JIA Y,et al. VPA and MEL induce apoptosis by inhibiting the Nrf2-ARE signaling pathway in TMZ-resistant U251 cells[J]. Mol Med Rep,2017,16(1):908-914.
CHEN J C,LEE I N,HUANG C,et al. Valproic acid-induced amphiregulin secretion confers resistance to temozolomide treatment in human glioma cells[J]. BMC Cancer,2019,19(1):756.
CHEN C H,CHANG Y J,KU M S,et al. Enhancement of temozolomide-induced apoptosis by valproic acid in human glioma cell lines through redox regulation[J]. J Mol Med(Berl),2011,89(3):303-315.
FRIEDMAN H S,KERBY T,CALVERT H. Temozolomide and treatment of malignant glioma[J]. Clin Cancer Res,2000,6(7):2585-2597.
RYU C H,YOON W S,PARK K Y,et al. Valproic acid downregulates the expression of MGMT and sensitizes temozolomide-resistant glioma cells[J]. J Biomed Biotechnol,2012,2012:987495.
LI Z Y,XIA Y,BU X Y,et al. Effects of valproic acid on the susceptibility of human glioma stem cells for TMZ and ACNU[J]. Oncol Lett,2018,15(6):9877-9883.
TSAI H C,WEI K C,CHEN P Y,et al. Valproic acid enhanced temozolomide-induced anticancer activity in human glioma through the p53-PUMA apoptosis pathway[J]. Front Oncol,2021,11:722754.
KWEON M H,ADHAMI V M,LEE J S,et al. Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate[J]. J Biol Chem,2006,281(44):33761-33772.
YANG E S,NOWSHEEN S,WANG T,et al. Glycogen synthase kinase 3beta inhibition enhances repair of DNA double-strand breaks in irradiated hippocampal neurons[J]. Neuro Oncol,2011,13(5):459-470.
ZHANG H L,ZHANG W,ZHOU Y,et al. Dual functional mesoporous silicon nanoparticles enhance the radiosensitivity of VPA in glioblastoma[J]. Transl Oncol,2017,10(2):229-240.
THOTALA D,KARVAS R M,ENGELBACH J A,et al. Valproic acid enhances the efficacy of radiation therapy by protecting normal hippocampal neurons and sensitizing malignant glioblastoma cells[J]. Oncotarget,2015,6(33):35004-35022.
0
Views
10
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution