Updated:2024-04-09
    • Intervention effect and mechanism of breviscapine on hepatic fibrosis in rats

    • WEI Dandan

      ,  

      LI Shanshan

      ,  

      ZHANG Minghao

      ,  

      WEI Yurun

      ,  

      WANG Hongling

      ,  

      CHAI Shuangshuang

      ,  

      YIN Jingjing

      ,  

      ZHANG Min

      ,  

      ZHAO Han

      ,  

      WU Zongyao

      ,  

      ZHU Kuicheng

      ,  

      WANG Qingbo

      ,  
    • ZHONGGUO YAOFANG   Vol. 35, Issue 6, Pages: 671-677(2024)
    • DOI:10.6039/j.issn.1001-0408.2024.06.06    

      CLC: R965;R285.5
    • Published:30 March 2024

      Received:19 August 2023

      Revised:29 December 2023

    Scan for full text

  • Cite this article

    PDF

  • WEI Dandan,LI Shanshan,ZHANG Minghao,et al.Intervention effect and mechanism of breviscapine on hepatic fibrosis in rats[J].ZHONGGUO YAOFANG,2024,35(06):671-677. DOI: 10.6039/j.issn.1001-0408.2024.06.06.

  •  
  •  
    Sections

    Abstract

    OBJECTIVE

    To investigate the intervention effect and potential mechanism of breviscapine on hepatic fibrosis (HF) in rats based on the transforming growth factor-β1(TGF-β1)/Smad2/extracellular signal-regulated protein kinase 1(ERK1) and Kelch-like epichlorohydrin-associated protein 1(Keap1)/nuclear factor-erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) pathways.

    transl

    METHODS

    Totally 60 rats were randomly divided into normal control group, model group, breviscapine low-dose, medium-dose and high-dose groups (5.4, 10.8, 21.6 mg/kg), and colchicine group (positive control, 0.45 mg/kg), with 10 rats in each group, half male and half female. Except for the normal control group, HF model of the other groups was induced by carbon tetrachloride. Subsequently, each drug group was given corresponding medicine by gavage once a day for 28 days. The liver appearance of rats in each group was observed and their liver coefficients were calculated. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum, those of ALT, AST, superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) in liver tissue were detected. The liver tissue inflammatory and fibrotic changes were observed. The protein and mRNA expressions of TGF-β1, Smad2, ERK1, Nrf2, Keap1 and HO-1 in liver tissue were detected.

    transl

    RESULTS

    Compared with the normal control group, the model group showed large areas of white nodular lesions in the liver, obvious inflammatory cell infiltration and collagen fiber deposition. The body weight, the levels of SOD and GSH-Px in liver tissue, the protein and mRNA expressions of Nrf2 and HO-1 were significantly lowered in the model group (P<0.05); the liver coefficient, the percentage of Masson staining positive area, ALT and AST levels of serum and liver tissue, MDA level of liver tissue, the protein and mRNA expressions of TGF-β1, Smad2, ERK1 and Keap1 were significantly increased (P<0.05). Compared with the model group, the liver lesions of rats in each drug group were improved, and the above quantitative indexes were generally reversed (P<0.05).

    transl

    CONCLUSIONS

    Breviscapine has a good intervention effect on HF rats, which may be related to inhibiting TGF-β1/Smad2/ERK1 pathway for anti-fibrosis and regulating Keap1/Nrf2/HO-1 pathway to inhibit oxidative stress.

    transl

    Keywords

    hepatic fibrosis; oxidative stress; TGF-β1/Smad2/ERK1 pathway; Keap1/Nrf2/HO-1 pathway

    transl

    肝纤维化(hepatic fibrosis,HF)是慢性肝病发展到肝硬化乃至肝癌的共同途径[1―2]。当肝损伤发生时,受损的上皮细胞和纤维化组织可激活肝星状细胞(hepatic stellate cells,HSCs),并使HSCs转化为肌成纤维细胞(myofibroblast,MFB)表型,合成大量肝细胞外基质(extracellular matrix,ECM),致使ECM合成与降解失衡,形成瘢痕组织,最终引发HF[

    3]。HF的西医治疗以抗病毒、调节免疫、保护肝脏、抗纤维化等为主,旨在消除或控制病因,减轻纤维化程度,但难以逆转HF的发展进程[4]
    transl

    中医学将HF归为“积聚”“胁痛”范畴[

    5],湿、热、瘀、毒为其主要致病因素,治疗当以疏肝健脾、化瘀通络、清热化湿(毒)为主[6]。灯盏花素是从中药灯盏花中提取的有效成分,具有祛风除湿、活血化瘀、通经活络及抗氧化的作用,并能扩张血管,改善脑、心、肝微循环[7―8]。本课题组前期研究发现,灯盏花素可改善肾纤维化[9]。另有研究指出,灯盏花素可通过调控转化生长因子β1(transforming growth factor-β1,TGF-β1)/Smad通路来减轻急性心肌梗死大鼠的心室重构,提示TGF-β1可能是灯盏花素发挥药效的潜在靶点[10]。TGF-β1是目前学界公认的致纤维化因子之一,可通过调控Smad依赖及非依赖的胞外信号调节激酶(extracellular signal-regulated protein kinase,ERK)通路来协同调控ECM沉积,故抑制TGF-β1及其介导的相关通路则可延缓甚至逆转纤维化进程[11]。Smad2在TGF-β1/Smad通路中具有重要作用,抑制肝细胞内Smad2的活化,能有效降低TGF-β1的表达,延缓HF的发生、发展;与此同时,ERK1能通过磷酸化Smad2来促进纤维化进展,提示TGF-β1/Smad2通路与ERK1之间存在信号交互作用[12]。Kelch样环氧氯丙烷相关蛋白1(Kelch-like epichlorohydrin-associated protein 1,Keap1)/核转录因子红系2相关因子2(nuclear factor-erythroid 2-related factor 2,Nrf2)/血红素加氧酶1(heme oxygenase-1,HO-1)通路是调控体内氧化应激的重要通路之一,可靶向多种抗氧化酶系,经转录活化后可清除过多的活性氧(reactive oxygen species,ROS),进而减轻ROS引起的心肌细胞损伤,在心血管疾病的治疗中具有重要作用[13]。该通路中的Nrf2是抗氧化的关键调节因子,可调节多种抗氧化剂的表达,当氧化应激发生时,Nrf2会与Keap1解离,进而抑制下游抗氧化酶HO-1的表达[13]。考虑到灯盏花素的活血化瘀、抗氧化作用与中医“祛瘀解毒”治疗思路相符,且现代医学肝肾纤维化的病机特点与中医肝肾藏象理论基本一致,本研究拟以秋水仙碱为阳性对照药物[14],基于TGF-β1/Smad2/ERK1和Keap1/Nrf2/HO-1通路初步探讨灯盏花素干预HF的作用及潜在机制,以期为抗HF活性成分的挖掘提供参考。
    transl

    1 材料

    1.1 主要仪器

    本研究所用主要仪器有FlexA-200型酶标仪(杭州奥盛仪器有限公司)、CX41型光学显微镜(日本Olympus公司)、StepOneTM plus型实时荧光定量聚合酶链式反应(PCR)仪(美国ABI公司)、HY1508型石蜡切片机(金华惠友仪器设备有限公司)等。

    transl

    1.2 主要药品与试剂

    灯盏花素片(批号20220732,每片含灯盏花素20 mg)购自云南生物谷药业股份有限公司;秋水仙碱片(批号210715,每片含秋水仙碱0.5 mg)购自西双版纳版纳药业有限责任公司;四氯化碳(CCl4,批号20210612)购自天津市富宇精细化工有限公司;羧甲基纤维素钠(CMC-Na,批号20160704)购自国药集团化学试剂有限公司;丙氨酸转氨酶(alanine aminotransferase,ALT)试剂盒(批号C009-1-1)、天冬氨酸转氨酶(aspartate aminotransferase,AST)试剂盒(批号C010-1-1)、超氧化物歧化酶(superoxide dismutase,SOD)试剂盒(批号A001-1-2)、丙二醛(malondialdehyde,MDA)试剂盒(批号A003-1-2)、谷胱甘肽过氧化物酶(glutathione peroxidase,GSH-Px)试剂盒(批号A005-1-2)均购自南京建成生物工程研究所;兔免疫组化试剂盒(批号SP-9001),DAB显色试剂盒(批号ZLI-9018),兔抗大鼠TGF-β1、Smad2、ERK1、Keap1、Nrf2、HO-1抗体(批号分别为GB13028、GB11511、GB13003、GB11847、GB113808、GB11104),辣根过氧化物酶标记的山羊抗兔IgG二抗(批号G1213-100UL),TriQuick总RNA提取试剂(批号R1100),cDNA合成试剂盒(批号G3330),实时荧光定量PCR扩增试剂(批号G3320)均购自武汉赛维尔生物科技有限公司。

    transl

    1.3 实验动物

    SPF级健康SD大鼠60只,雌雄各半,体重180~200 g,由郑州市惠济区华兴实验动物养殖场提供,动物生产许可证号为SCXK(豫)2019-0002。所有动物均饲养于河南中医药大学医学机能实验室(室温20~22 ℃,相对湿度55%~60%,正常光照),自由饮水、采食。本实验方案获河南中医药大学第一附属医院伦理委员会批准(编号DWLL202201010)。

    transl

    2 方法

    2.1 分组、造模与给药

    将60只大鼠按随机数字表法分为正常对照组,模型组,灯盏花素低、中、高剂量组(5.4、10.8、21.6 mg/kg)和秋水仙碱组(阳性对照,0.45 mg/kg),每组10只,雌雄各半。除正常对照组外,其余各组大鼠均按1 mL/kg腹腔注射50%CCl4-橄榄油溶液,每周2次,连续4周。若大鼠血清中ALT、AST水平显著升高,且肝组织可见明显纤维化病变和炎症细胞浸润,则表明HF模型复制成功[

    113]。造模后,灯盏花素低、中、高剂量组大鼠分别灌胃相应混悬液[以0.1%CMC-Na溶液为溶剂;根据成人(70 kg)剂量120 mg换算得大鼠中剂量10.8 mg/kg,再分别以中剂量的1/2、2倍作为低、高剂量],秋水仙碱组大鼠灌胃相应混悬液[以0.1%CMC-Na溶液为溶剂;根据成人(70 kg)剂量5 mg换算得大鼠剂量0.45 mg/kg],灌胃体积均为10 mL/kg;正常对照组、模型组大鼠灌胃等体积0.1%CMC-Na溶液;每天1次,连续28 d。
    transl

    2.2 样本采集

    末次给药24 h后,称取各组大鼠体重,麻醉后于腹主动脉取血,血样于常温下静置1~2 h,低温离心,取上层血清,于-80 ℃下储存,备用。取血后,脱颈椎处死各组大鼠并剖取肝脏,去除周围组织,以生理盐水洗涤,观察其外观形态,用滤纸吸尽其表面液体后称重;随后,将肝脏一分为二,其中一份用4%多聚甲醛固定,另一份用液氮速冻后于-80 ℃下储存,备用。

    transl

    2.3 大鼠肝脏系数检测

    根据大鼠体重、肝脏质量,按下式计算各组大鼠的肝脏系数:肝脏系数=肝脏质量/体重。

    transl

    2.4 大鼠血清中ALTAST水平检测

    采用酶联免疫吸附测定(ELISA)法检测。取“2.2”项下各组大鼠血清样品适量,按照相应试剂盒说明书方法操作,以酶标仪检测血清中ALT、AST水平。

    transl

    2.5 大鼠肝组织中ALTASTSODMDAGSH-Px水平检测

    采用ELISA法检测。称取“2.2”项下各组大鼠冻存的肝组织适量,加入冰生理盐水0.9 mL制备10%匀浆液,以3 000 r/min离心10 min,取上清液适量,按照相应试剂盒说明书方法操作,以酶标仪检测肝组织中ALT、AST、SOD、MDA、GSH-Px水平。

    transl

    2.6 大鼠肝组织病理形态学观察

    取“2.2”项下各组大鼠固定好的肝组织,经脱水、透明、包埋后,切片,进行常规苏木精-伊红(HE)染色,置于显微镜下观察肝组织病理变化。同法制作切片,进行Masson染色,置于显微镜下观察肝组织纤维化情况,并采用Image-Pro Plus 6.0软件检测Masson染色阳性(呈蓝色)面积百分比(即阳性面积与总面积的百分比值),用以评价肝组织的纤维化水平。

    transl

    2.7 大鼠肝组织中TGF-β1Smad2、ERK1、Nrf2、Keap1、HO-1蛋白表达水平检测

    采用免疫组化法检测。取“2.6”项下各组大鼠的肝组织切片,经脱蜡、水化、封闭(H2O2)、清洗、抗原修复(柠檬酸盐缓冲液)后,滴加山羊血清封闭液,室温孵育;弃去上清液,分别滴加TGF-β1、Smad2、ERK1、Nrf2、Keap1、HO-1一抗(稀释比例均为1∶1 000),4 ℃孵育过夜;加入相应二抗(稀释比例为1∶100),常温孵育20~30 min,以DAB显色;冲洗后,以苏木精复染,再以盐酸乙醇溶液分化;冲洗后,脱水、透明、封片,置于显微镜下观察,并采用Image-Pro Plus 6.0软件检测阳性(呈棕黄色)区域的积分光密度(integrated optical density,IOD)值,用以评价目的蛋白的表达水平。

    transl

    2.8 大鼠肝组织中TGF-β1Smad2、ERK1、Nrf2、Keap1、HO-1 mRNA表达水平检测

    采用实时荧光定量PCR法检测。取“2.2”项下各组大鼠冻存的肝组织适量,加入TriQuick试剂1 mL,充分研磨匀浆后提取总RNA并检测RNA浓度及纯度。按cDNA合成试剂盒说明书方法操作,合成cDNA;以此cDNA为模板,进行PCR扩增。反应体系(共15 μL)包括cDNA模板2 μL,上、下游引物共1.5 μL,2×qPCR Mix 7.5 μL,无核酸酶水4 μL。扩增条件如下:95 ℃预变性10 min;95 ℃变性15 s,60 ℃退火30 s,72 ℃延伸30 s,共40个循环。反应结束后,根据扩增曲线及熔解曲线判断扩增结果,以甘油醛-3-磷酸脱氢酶(GAPDH)为内参,采用2-ΔΔCt法计算目的基因的相对表达水平(结果以正常对照组为参照进行归一化处理)。PCR引物序列及扩增产物片段长度见表1

    transl

    表1  引物序列及扩增产物片段长度
    目的基因引物序列(5′→3′)扩增产物片段长度/bp
    TGF-β1 上游引物:GCTGAACCAAGGAGACGGAATA 194
    下游引物:GCAGGTGTTGAGCCCTTTCC
    Smad2 上游引物:ACTGCCGCCTCTGGATGACTAT 197
    下游引物:AGAGAGTGGTAGGAGACAGTTCAGC
    ERK1 上游引物:GAGAGATGTTTACATTGTTCAGGACC 273
    下游引物:GCCACATACTCGGTAAGAAAGC
    Nrf2 上游引物:AATTGCCACCGCCAGGACT 100
    下游引物:TCAAACACTTCTCGACTTACCCC
    Keap1 上游引物:GAGATATGAGCCAGATCGAGACG 183
    下游引物:GGTGTAATCATCCGCCACTCAT
    HO-1 上游引物:CAGCATGTCCCAGGATTTGTC 104
    下游引物:CCTGACCCTTCTGAAAGTTCCTC
    GAPDH 上游引物:CTGGAGAAACCTGCCAAGTATG 138
    下游引物:GGTGGAAGAATGGGAGTTGCT
    icon Download:  CSV icon Download:  Table Images

    2.9 统计学方法

    采用SPSS 24.0软件对数据进行统计分析。计量资料以x±s表示,多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验(方差齐)或Dunnett检验(方差不齐)。检验水准α=0.05。

    transl

    3 结果

    3.1 大鼠肝脏外观形态观察结果

    正常对照组大鼠肝脏形态正常,外观红润;模型组大鼠肝脏稍增大,颜色深,可见大面积白色结节灶;秋水仙碱组和灯盏花素低、中、高剂量组大鼠肝脏颜色较模型组浅,白色结节灶面积有所缩小。结果见图1

    transl

    fig

    图1  各组大鼠肝脏外观形态图

    icon Download:  Full-size image | High-res image | Low-res image

    3.2 大鼠肝脏系数检测结果

    与正常对照组比较,模型组大鼠的体重显著降低,而肝脏系数显著升高(P<0.05);与模型组比较,秋水仙碱组、灯盏花素高剂量组大鼠的肝脏质量和各药物组大鼠的肝脏系数均显著降低(P<0.05)。结果见表2

    transl

    表2  各组大鼠体重、肝脏质量和肝脏系数的检测结果(x±sn=10)
    组别体重/g肝脏质量/mg肝脏系数/(mg/g)
    正常对照组 279.22±14.60 10 455.93±484.11 37.47±1.12
    模型组 202.17±50.27a 11 705.33±3 139.52 57.79±3.98a
    秋水仙碱组 223.17±32.07 8 612.87±1 401.42b 38.57±1.97b
    灯盏花素低剂量组 222.33±64.32 10 899.48±3 149.85 49.21±2.35b
    灯盏花素中剂量组 235.83±38.77 10 635.57±1 579.16 45.20±1.20b
    灯盏花素高剂量组 237.50±16.63 9 969.07±701.04b 41.98±0.92b

    a:与正常对照组比较,P<0.05;b:与模型组比较,P<0.05。

    icon Download:  CSV icon Download:  Table Images

    3.3 大鼠血清及肝组织中ALTAST水平检测结果

    与正常对照组比较,模型组大鼠血清及肝组织中ALT、AST水平均显著升高(P<0.05);与模型组比较,各药物组大鼠血清及肝组织中ALT(灯盏花素低剂量组肝组织除外)、AST水平均显著降低(P<0.05)。结果见表3

    transl

    表3  各组大鼠血清及肝组织中ALTAST水平的检测结果(x±sn=10)
    组别血清肝组织
    ALT/(U/L)AST/(U/L)ALT/(U/L)AST/(U/L)
    正常对照组 28.78±5.35 131.22±7.44 207.87±16.82 129.17±6.85
    模型组 167.87±11.79a 362.29±27.17a 371.53±6.64a 506.00±83.80a
    秋水仙碱组 38.26±4.24b 140.46±7.06b 277.85±18.38b 156.60±4.53b
    灯盏花素低剂量组 74.08±7.69b 269.43±41.96b 359.32±2.35 334.41±50.54b
    灯盏花素中剂量组 61.24±7.96b 168.98±8.73b 348.86±11.11b 213.23±13.84b
    灯盏花素高剂量组 38.62±2.92b 148.52±4.89b 315.53±8.44b 165.67±12.82b

    a:与正常对照组比较,P<0.05;b:与模型组比较,P<0.05。

    icon Download:  CSV icon Download:  Table Images

    3.4 大鼠肝组织中SODMDAGSH-Px水平检测结果

    与正常对照组比较,模型组大鼠肝组织中SOD、GSH-Px水平均显著降低,MDA水平显著升高(P<0.05);与模型组比较,各药物组大鼠肝组织中SOD、GSH-Px水平均显著升高,MDA水平均显著降低(P<0.05)。结果见表4

    transl

    表4  各组大鼠肝组织中SODMDAGSH-Px水平的检测结果(x±sn=10)
    组别SOD/(U/mg)MDA/(nmol/mg)GSH-Px/(U/mL)
    正常对照组 273.08±10.33 3.87±0.61 759.44±71.25
    模型组 213.90±18.61a 11.42±1.36a 262.27±28.97a
    秋水仙碱组 279.57±4.89b 3.86±0.48b 709.10±77.66b
    灯盏花素低剂量组 253.06±1.58b 8.57±0.58b 446.40±40.02b
    灯盏花素中剂量组 268.21±7.13b 5.95±0.80b 586.76±61.34b
    灯盏花素高剂量组 282.68±11.00b 4.31±0.70b 694.41±98.19b

    a:与正常对照组比较,P<0.05;b:与模型组比较,P<0.05。

    icon Download:  CSV icon Download:  Table Images

    3.5 大鼠肝组织病理形态学观察结果

    HE染色结果显示,正常对照组大鼠肝细胞围绕中央静脉呈放射状排列,形态正常,未见炎症细胞浸润;模型组大鼠肝细胞排列紊乱,呈空泡状脂肪变性,细胞间纤维结缔组织增生,呈条状纤维间隔,可见大量炎症细胞浸润;灯盏花素低剂量组大鼠肝细胞大量空泡状变性,细胞间有少量纤维组织增生;灯盏花素中、高剂量组和秋水仙碱组大鼠肝细胞排列基本正常,细胞间纤维组织少,未见明显炎症细胞浸润,病变程度有所缓解。Masson染色结果显示,正常对照组大鼠肝小叶结构完整,仅在肝静脉管壁周有少量蓝色胶原纤维沉积;模型组大鼠肝小叶结构遭到破坏,肝静脉与汇管区周围可见广泛而致密的蓝色胶原纤维沉积,并延伸形成纤维间隔;各药物组大鼠肝组织纤维化改变均有不同程度缓解。与正常对照组[(9.70±0.92)%]比较,模型组大鼠肝组织Masson染色阳性面积百分比[(35.03±1.12)%]显著增加(P<0.05);与模型组比较,秋水仙碱组和灯盏花素低、中、高剂量组大鼠肝组织Masson染色阳性面积百分比[(13.66±2.33)%、(14.25±0.68)%、(11.51±1.80)%、(8.97±1.31)%]均显著减小(P<0.05)。结果见图2

    transl

    fig

    图2  各组大鼠肝组织病理形态观察的显微图(标尺=5 μm

    黑色箭头:炎症细胞浸润区域或胶原纤维聚集区域。

    icon Download:  Full-size image | High-res image | Low-res image

    3.6 大鼠肝组织中TGF-β1Smad2、ERK1、Nrf2、Keap1、HO-1蛋白表达水平检测结果

    与正常对照组比较,模型组大鼠肝组织中可见大量TGF-β1、Smad2、ERK1、Keap1蛋白阳性表达,其阳性区域IOD值均显著升高(P<0.05);可见少量Nrf2、HO-1蛋白阳性表达,其阳性区域IOD值均显著降低(P<0.05)。与模型组比较,各药物组大鼠肝组织中TGF-β1、Smad2、ERK1、Keap1蛋白阳性表达均有所减少,其阳性区域IOD值均显著降低(P<0.05);Nrf2、HO-1蛋白阳性表达均有所增加,其阳性区域IOD值均显著升高(P<0.05)。结果见图3(以TGF-β1、Nrf2蛋白为例)、表5

    transl

    fig

    图3  各组大鼠肝组织中TGF-β1Nrf2蛋白表达的免疫组化图(标尺=5 μm

    黑色箭头:目的蛋白阳性表达区域。

    icon Download:  Full-size image | High-res image | Low-res image
    表5  各组大鼠肝组织中TGF-β1Smad2、ERK1、Nrf2、Keap1、HO-1蛋白表达水平的检测结果(x±sn=10)
    组别TGF-β1(×102Smad2(×102ERK1(×102Nrf2(×102Keap1(×102HO-1(×102
    正常对照组 893.63±3.45 885.44±2.83 884.84±2.35 844.60±2.79 875.54±2.73 1 035.10±3.40
    模型组 1 732.32±1.49a 1 641.08±2.65a 2 238.45±3.20a 205.74±2.94a 5 426.68±27.04a 466.01±2.16a
    秋水仙碱组 825.44±3.93b 842.21±3.49b 844.56±3.39b 827.52±2.67b 957.10±1.76b 1 203.21±2.74b
    灯盏花素低剂量组 803.84±2.05b 882.69±2.07b 1 036.74±10.64b 766.92±3.48b 935.81±2.01b 1 086.45±3.20b
    灯盏花素中剂量组 794.30±3.48b 791.98±1.32b 944.77±2.32b 874.26±3.13b 926.22±3.20b 1 155.17±2.81b
    灯盏花素高剂量组 794.57±0.66b 778.12±1.19b 903.77±2.87b 893.56±3.19b 963.18±2.19b 1 117.90±3.29b

    a:与正常对照组比较,P<0.05;b:与模型组比较,P<0.05。

    icon Download:  CSV icon Download:  Table Images

    3.7 大鼠肝组织中TGF-β1Smad2、ERK1、Nrf2、Keap1、HO-1 mRNA表达水平检测结果

    与正常对照组比较,模型组大鼠肝组织中TGF-β1、Smad2、ERK1、Keap1 mRNA表达水平均显著升高,Nrf2、HO-1 mRNA表达水平均显著降低(P<0.05);与模型组比较,各药物组大鼠肝组织中TGF-β1、Smad2、ERK1、Keap1 mRNA表达水平均显著降低,Nrf2、HO-1(灯盏花素低剂量组除外) mRNA水平均显著升高(P<0.05)。结果见表6

    transl

    表6  各组大鼠肝组织中TGF-β1Smad2、ERK1、Nrf2、Keap1、HO-1 mRNA表达水平的检测结果(x±sn=10)
    组别TGF-β1Smad2ERK1Nrf2Keap1HO-1
    正常对照组 1 1 1 1 1 1
    模型组 2.51±0.84a 2.36±0.26a 3.64±0.73a 0.22±0.03a 2.66±0.24a 0.59±0.04a
    秋水仙碱组 0.20±0.13b 0.47±0.19b 0.54±0.18b 0.80±0.22b 0.61±0.12b 1.57±0.31b
    灯盏花素低剂量组 0.54±0.37b 0.32±0.08b 0.57±0.14b 0.20±0.03 0.15±0.03b 0.83±0.14
    灯盏花素中剂量组 0.76±0.21b 0.28±0.04b 0.49±0.14b 0.84±0.08b 0.38±0.06b 1.69±0.43b
    灯盏花素高剂量组 0.52±0.17b 0.33±0.10b 0.56±0.19b 1.34±0.33b 0.39±0.04b 1.98±0.40b

    a:与正常对照组比较,P<0.05;b:与模型组比较,P<0.05。

    icon Download:  CSV icon Download:  Table Images

    4 讨论

    HF是肝脏功能减退的关键环节,动物模型可由化学诱导、饮食诱导、手术和病毒感染等途径构建,其中由CCl4诱导构建的HF模型应用较为广泛。CCl4对啮齿类动物具有广泛的肝脏毒性,可通过灌胃或腹腔注射的方式进入机体,由门静脉入肝后被肝细胞吸收,从而使细胞膜磷脂分子过氧化,引起肝细胞坏死和炎症反应;同时,CCl4还可作用于HSCs,使其活化并转化为MFB,MFB大量增殖并合成ECM,使得ECM在短时间内成倍堆积,从而形成HF[

    15]。研究表明,CCl4诱导构建的HF模型具有造模周期短、可靠性强、重复性高的优点,与人类HF的病理改变较为一致,可用于HF的发病机制研究及药物筛选[5]
    transl

    HF是各种慢性肝病发展的常见病理过程,对该过程进行干预是治疗慢性肝病、防止其转化为肝硬化和肝癌的重要环节。研究指出,除晚期肝硬化外的多种慢性肝病的纤维化均可逆[

    15]。本研究基于HF湿、热、瘀、毒损伤肝络,导致气机不畅、瘀血络阻的病机特点,以秋水仙碱为阳性对照药物,初步考察灯盏花素对HF的干预作用。考虑到秋水仙碱可在抗纤维化过程中下调肝组织中TGF-β1的表达,上调Nrf2的表达,可作为TGF-β1抑制剂和Nrf2激动剂,故本研究将其作为阳性对照药物[16―17]
    transl

    本研究结果显示,低、中、高剂量的灯盏花素能不同程度地缩小肝脏白色结节灶,降低HF大鼠血清和肝组织中ALT、AST水平和肝脏指数,提示灯盏花素能有效延缓HF进展,具有较好的肝保护作用;同时,病理染色观察结果显示,经灯盏花素干预后,HF大鼠肝细胞排列趋于正常,细胞间纤维组织和炎症细胞浸润减少,且Masson染色阳性面积百分比较模型组显著降低,提示该成分能减轻HF大鼠肝组织的炎症反应,并改善其纤维化损伤。

    transl

    TGF-β1蛋白是纤维化的主要因子,与HF的发生、发展密切相关;Smad2作为TGF-β1下游调节因子,可通过磷酸化来促进TGF-β1介导的HF[

    18]。ERK已被证实是TGF-β1诱导纤维化的重要分子[19],而TGF-β1又能反向促进ERK1的磷酸化,进而导致纤维化的发生[20]。本研究结果显示,TGF-β1、Smad2、ERK1蛋白及mRNA在HF大鼠肝组织中呈高表达;经灯盏花素干预后,HF大鼠肝组织中TGFβ1、Smad2、ERK1蛋白及mRNA的表达水平均显著降低,说明该成分的HF抑制作用可能与抑制TGF-β1/Smad2/ERK1通路有关。
    transl

    氧化应激是体内氧化与抗氧化作用失衡的一种状态,能促进动脉硬化和纤维化的进程。研究证实,受Keap1/Nrf2/HO-1通路调控的氧化应激相关指标SOD、GSH-Px、MDA与HF的发生、发展密切相关[

    1321]。本研究结果显示,SOD和GSH-Px在HF大鼠肝组织中呈低表达,MDA则呈高表达,说明CCl4诱导的HF与氧化应激相关;经灯盏花素干预后,HF大鼠肝组织中SOD、GSH-Px水平均显著升高,MDA水平均显著降低,提示该成分具有较好的抗氧化应激作用。进一步研究结果显示,Keap1蛋白及mRNA在HF大鼠肝组织中呈高表达,Nrf2、HO-1蛋白及mRNA则呈低表达,提示Keap1/Nrf2/HO-1通路与CCl4诱发HF相关;经灯盏花素干预后,HF大鼠肝组织中Keap1蛋白及mRNA的表达水平均显著降低,Nrf2、HO-1蛋白及mRNA的表达水平均有不同程度升高,说明该成分能通过调控Keap1/Nrf2/HO-1通路来改善大鼠的氧化应激,从而抑制HF的进展。
    transl

    综上所述,灯盏花素对大鼠HF有较好的干预作用,其作用可能与抑制TGF-β1/Smad2/ERK1通路来抗纤维化,调控Keap1/Nrf2/HO-1通路来抑制氧化应激有关。

    transl

    参考文献

    1

    张明昊高一盈董文霞. 丹参多酚酸盐对肝纤维化小鼠Notch-Hes1信号通路的影响[J]. 中国临床药理学杂志2022389):949-954. [Baidu Scholar] 

    ZHANG M HGAO Y YDONG W Xet al. Effects of salvianolate on Notch-Hes1 signal pathway in mice with liver fibrosis[J]. Chin J Clin Pharmacol2022389):949-954. [Baidu Scholar] 

    2

    巴图德力根薛兰牧仁. 德都红花-7味散对四氯化碳所致慢性肝损伤大鼠凋亡蛋白表达的影响[J]. 中国临床药理学杂志20223811):1215-1218. [Baidu Scholar] 

    BatudeligenXUE LMU Ret al. Effect of Deduhonghua-7 powder on expression of apoptotic protein of carbon te-trachloride induced chronic liver injury rats[J]. Chin J Clin Pharmacol20223811):1215-1218. [Baidu Scholar] 

    3

    马婷邝晓岚蔡婉娜. 黄酮类成分抗肝纤维化作用及其机制的研究进展[J]. 中草药20225313):4146-4161. [Baidu Scholar] 

    MA TKUANG X LCAI W Net al. Research progress on effects of flavonoids against hepatic fibrosis and their mechanisms[J]. Chin Tradit Herb Drugs20225313):4146-4161. [Baidu Scholar] 

    4

    张敬博陈平平于栋华. 黄芩-赤芍药对不同比例配伍抗大鼠肝纤维化模型作用机制探讨[J]. 中国实验方剂学杂志20222812):69-77. [Baidu Scholar] 

    ZHANG J BCHEN P PYU D Het al. Mechanism of Scutellariae Radix-Paeoniae Radix Rubra combination of different proportions against hepatic fibrosis in rats[J]. Chin J Exp Tradit Med Formulae20222812):69-77. [Baidu Scholar] 

    5

    傅柳严小军尚广彬. 肝纤维化病证结合动物模型的建立及评价方法研究进展[J]. 中华中医药杂志2022376):3330-3334. [Baidu Scholar] 

    FU LYAN X JSHANG G Bet al. Research progress on establishment and evaluation methods of animal model of hepatic fibrosis disease and syndrome combination[J]. China J Tradit Chin Med Pharm2022376):3330-3334. [Baidu Scholar] 

    6

    刘莉杨静李宗云. 肝爽颗粒对慢性乙型肝炎肝纤维化(S1和S2期)肝郁脾虚兼血瘀证的早期防治疗效[J]. 中国实验方剂学杂志20222811):132-138. [Baidu Scholar] 

    LIU LYANG JLI Z Yet al. Ganshuang granule allevia-tes early liver fibrosis(S1 and S2)in chronic hepatitis B with liver depression spleen deficiency and blood stasis syndrome[J]. Chin J Exp Tradit Med Formulae20222811):132-138. [Baidu Scholar] 

    7

    杨娇曹昌娥赖泳. 灯盏花素对张氏肝细胞中CYP3A4和CYP2C19的影响和机制[J]. 中国医院药学杂志20173716):1557-1562. [Baidu Scholar] 

    YANG JCAO C ELAI Yet al. Effect of breviscapine on CYP3A4 and CYP2C19 activities and its molecular mechanisms in Chang liver cells[J]. Chin J Hosp Pharm20173716):1557-1562. [Baidu Scholar] 

    8

    杨淑艳钟秀宏张以忠. 灯盏花素对抗结核药致小鼠肝损伤的保护作用及机制研究[J]. 中国药学杂志20114616):1242-1244. [Baidu Scholar] 

    YANG S YZHONG X HZHANG Y Zet al. Protective effect of breviscapine on hepatic injury induced by anti-tubercular drugs in mice and its mechanism[J]. Chin Pharm J20114616):1242-1244. [Baidu Scholar] 

    9

    张明昊赵绅杜婧雯. 灯盏花素通过调控TGF-β1介导的Smad和ERK通路干预肾纤维化大鼠的作用机制研究[J]. 中药新药与临床药理20223310):1347-1356. [Baidu Scholar] 

    ZHANG M HZHAO SDU J Wet al. Mechanism of breviscapine in intervening renal fibrosis rats through regulating TGF-β1-mediated Smad and ERK pathway[J]. Tradit Chin Drug Res Clin Pharmacol20223310):1347-1356. [Baidu Scholar] 

    10

    赵博彭建军李广平. 灯盏花素通过TGF-β1/Smads通路减轻急性心肌梗死大鼠心室重构[J]. 中国免疫学杂志2021374):410-414. [Baidu Scholar] 

    ZHAO BPENG J JLI G Pet al. Breviscapine reduces ventricular remodeling in rats with acute myocardial infarction via TGF-β1/Smads pathway[J]. Chin J Immunol2021374):410-414. [Baidu Scholar] 

    11

    LI QMING YJIA Het al. Poricoic acid A suppresses TGF-β1-induced renal fibrosis and proliferation via the PDGF-C,Smad3 and MAPK pathways[J]. Exp Ther Med2021214):289. [Baidu Scholar] 

    12

    许晓刚张春江付彦杰. 益肾化湿颗粒对MsPGN大鼠肾组织TGF-β1信号通路和ERK1/2磷酸化的影响[J]. 中成药20234512):4137-4142. [Baidu Scholar] 

    XU X GZHANG C JFU Y Jet al. Effects of Yishen Huashi Granule on TGF-β1 signal pathway and ERK1/2 phosphorylation in kidney tissue of MsPGN rats[J]. Chin Tradit Pat Med20234512):4137-4142. [Baidu Scholar] 

    13

    郑冬晓陈琳琳韦其慧. 褐藻素通过调控Nrf2/Keap1通路缓解糖尿病大鼠心肌肥大[J]. 南方医科大学学报2022425):752-759. [Baidu Scholar] 

    ZHENG D XCHEN L LWEI Q Het al. Fucoxanthin regulates Nrf2/Keap1 signaling to alleviate myocardial hypertrophy in diabetic rats[J]. J South Med Univ2022425):752-759. [Baidu Scholar] 

    14

    卢芬萍胡世平唐颖慧. 丹桃养肝丸对四氯化碳致肝纤维化大鼠的保护作用研究[J]. 现代中西医结合杂志20233214):1940-1944,1950. [Baidu Scholar] 

    LU F PHU S PTANG Y Het al. Protective effect of Dantao yanggan pill on carbon tetrachloride induced liver fibrosis in rats[J]. Mod J Integr Tradit Chin West Med20233214):1940-1944,1950. [Baidu Scholar] 

    15

    南洋董辉王志刚. 肝纤维化动物实验模型的研究进展[J]. 中国医药导报20221912):34-37. [Baidu Scholar] 

    NAN YDONG HWANG Z Get al. Research progress of animal experimental model of hepatic fibrosis[J]. China Med Her20221912):34-37. [Baidu Scholar] 

    16

    AYDIN M MAKCALI K C. Liver fibrosis[J]. Turk J Gastroenterol2018291):14-21. [Baidu Scholar] 

    17

    孔俊英王新春. 秋水仙碱对心肌组织中TGF-β1的影响[J]. 哈尔滨医科大学学报2009436):552-554. [Baidu Scholar] 

    KONG J YWANG X C. Effect of colchicine on myocardium transforming growth factor-beta 1[J]. J Harbin Med Univ2009436):552-554. [Baidu Scholar] 

    18

    AWAD A SELARINY H ASALLAM A S. The possible protective effect of colchicine against liver damage induced by renal ischemia-reperfusion injury:role of Nrf2 and NLRP3 inflammasome[J]. Can J Physiol Pharmacol20209812):849-854. [Baidu Scholar] 

    19

    MU MZUO SWU R Met al. Ferulic acid attenuates liver fibrosis and hepatic stellate cell activation via inhibition of TGF-β/Smad signaling pathway[J]. Drug Des Devel Ther2018124107-4115. [Baidu Scholar] 

    20

    PENG YLI LZHANG Xet al. Fluorofenidone affects hepatic stellate cell activation in hepatic fibrosis by targe-ting the TGF-β1/Smad and MAPK signaling pathways[J]. Exp Ther Med2019181):41-48. [Baidu Scholar] 

    21

    TANG NHONG FHAO Wet al. Riboflavin ameliorates mitochondrial dysfunction via the AMPK/PGC1α/HO-1 signaling pathway and attenuates carbon tetrachloride- induced liver fibrosis in rats[J]. Exp Ther Med2022244):608. [Baidu Scholar] 

    185

    Views

    79

    Downloads

    0

    CSCD

    Alert me when the article has been cited
    Submit
    Tools
    Download
    Export Citation
    Share
    Add to favorites
    Add to my album

    Related Articles

    No data

    Related Author

    No data

    Related Institution

    No data
    0