浏览全部资源
扫码关注微信
儋州市人民医院神经内科,海南 儋州 571700
Published:30 March 2024,
Received:11 August 2023,
Revised:25 January 2024,
扫 描 看 全 文
周慧敏,陈静,欧诒丹等.七叶皂苷钠调控SIRT1/NF-κB信号通路对帕金森病大鼠的神经保护作用 Δ[J].中国药房,2024,35(06):689-694.
ZHOU Huimin,CHEN Jing,OU Yidan,et al.Neuroprotective effect of sodium aescinate on rats with Parkinson’s disease by regulating SIRT1/NF-κB signaling pathway[J].ZHONGGUO YAOFANG,2024,35(06):689-694.
周慧敏,陈静,欧诒丹等.七叶皂苷钠调控SIRT1/NF-κB信号通路对帕金森病大鼠的神经保护作用 Δ[J].中国药房,2024,35(06):689-694. DOI: 10.6039/j.issn.1001-0408.2024.06.09.
ZHOU Huimin,CHEN Jing,OU Yidan,et al.Neuroprotective effect of sodium aescinate on rats with Parkinson’s disease by regulating SIRT1/NF-κB signaling pathway[J].ZHONGGUO YAOFANG,2024,35(06):689-694. DOI: 10.6039/j.issn.1001-0408.2024.06.09.
目的
2
探究七叶皂苷钠通过调控沉默信息调节因子1(SIRT1)/核因子κB(NF-κB)信号通路发挥对帕金森病大鼠的神经保护作用。
方法
2
采用6-羟基多巴胺注射法构建帕金森病大鼠模型,将建模成功的48只大鼠随机分为模型组、七叶皂苷钠低剂量组(1.8 mg/kg)、七叶皂苷钠高剂量组(3.6 mg/kg)、七叶皂苷钠+EX527组(七叶皂苷钠3.6 mg/kg+SIRT1抑制剂EX527 5 mg/kg),每组12只;另取12只健康大鼠作为假手术组。各药物组大鼠腹腔注射相应药液,每天1次,持续21 d。末次给药结束24 h后,检测大鼠运动及认知功能,观察其黑质区和海马组织CA1区神经元形态,检测其黑质纹状体中多巴胺(DA)含量和黑质区酪氨酸羟化酶(TH)、α突触核蛋白(α-Syn)表达水平,检测其血清中促炎因子[白细胞介素6(IL-6)、IL-18]、抗炎因子(IL-10)水平及黑质纹状体中SIRT1、磷酸化NF-κB p65(p-NF-κB p65)、NF-κB p65蛋白表达水平。
结果
2
与假手术组比较,模型组大鼠黑质区和海马组织CA1区神经元损伤严重;其旋转圈数、逃避潜伏期、黑质区α-Syn蛋白表达水平、血清中促炎因子水平、黑质纹状体中p-NF-κB p65与NF-κB p65蛋白的相对表达量之比均显著升高或延长(
P
<0.05),目标象限停留时间、黑质纹状体中DA含量及黑质区TH蛋白表达水平、血清中抗炎因子水平、黑质纹状体中SIRT1蛋白表达水平均显著缩短或降低(
P
<0.05)。与模型组比较,七叶皂苷钠各剂量组大鼠神经元损伤程度减轻,各定量指标均显著改善,且高剂量组的改善更为明显(
P
<0.05),而EX527可逆转高剂量七叶皂苷钠的改善作用(
P
<0.05)。
结论
2
七叶皂苷钠可通过上调SIRT1蛋白表达来抑制NF-κB信号激活,从而抑制帕金森病大鼠的神经炎症,改善其运动及认知功能障碍,最终起到神经保护作用。
OBJECTIVE
2
To explore the neuroprotective effect of sodium aescinate on rats with Parkinson’s disease by regulating the silent information regulator 1 (SIRT1)/nuclear factor-κB (NF-κB) signaling pathway.
METHODS
2
The Parkinson’s disease rat model was constructed by using 6-hydroxydopamine injection method. Forty-eight rats successfully modeled were randomly divided into model group, sodium aescinate low-dose group (1.8 mg/kg), sodium aescinate high-dose group (3.6 mg/kg), sodium aescinate+EX527 (sodium aescinate 3.6 mg/kg+SIRT1 inhibitor EX527 5 mg/kg) group, with 12 rats in each group. Another 12 healthy rats were selected as the sham operation group. Each group was injected with the corresponding drug solution intraperitoneally, once a day, for 21 consecutive days. Twenty-four hours after the end of the last administration, the motor and cognitive functions of rats were detected, and the morphology of neurons in the substantia nigra and CA1 region of hippocampal tissue were observed. The content of dopamine (DA) in the nigrostriatal and the expression levels of tyrosine hydroxylase (TH) and α-synuclein (α-Syn) in the substantia nigra were detected. The serum levels of pro-inflammatory factor [interleukin-6 (IL-6), IL-18], anti-inflammatory factor (IL-10), and the expression levels of SIRT1, phosphorylated NF-κB p65 (p-NF-κB p65) and NF-κB p65 protein in nigrostriatal were detected.
RESULTS
2
Compared with sham operation group, the neurons in the substantia nigra and CA1 region of hippocampal tissue were seriously damaged in model group; the number of rotations, escape latency, the expression levels of α-Syn in substantia nigra, the levels of serum pro-inflammatory factors, the relative expression ratio of p-NF-κB p65 and NF-κB p65 protein in nigrostriatal were increased or prolonged significantly (
P
<0.05); the target quadrant residence time, the content of DA in nigrostriatal, the expression level of TH in substantia nigra, the serum level of anti-inflammatory factor, and the expression level of SIRT1 protein in substantia nigra striatum were significantly decreased or shortened (
P
<0.05). Compared with model group, the damage degrees of neuron in sodium aescinate groups were alleviated, and the quantitative indicators were significantly improved, which were more significant in the high-dose group (
P
<0.05); EX527 could reverse the improvement effect of high-dose sodium aescinate (
P
<0.05).
CONCLUSIONS
2
Sodium aescinate can inhibit the activation of NF-κB signal by up-regulating the protein expression of SIRT1, thereby reducing the neuroinflammation of rats with Parkinson’s disease, improving the motor and cognitive dysfunctions, and finally playing a neuroprotective role.
七叶皂苷钠帕金森病沉默信息调节因子1/核因子κB信号通路运动功能认知功能炎症反应神经保护
Parkinson’s diseaseSIRT1/NF-κB signaling pathwaymotor functioncognitive functioninflammatory responseneuroprotection
SCHRÖTER N,BORMANN T,RIJNTJES M,et al. Cognitive deficits in Parkinson’s disease are associated with neuronal dysfunction and not white matter lesions[J]. Mov Disord Clin Pract,2023,10(7):1066-1073.
KARTIK S,PAL R,CHAUDHARY M J,et al. Neuroprotective role of chloroquine via modulation of autophagy and neuroinflammation in MPTP-induced Parkinson’s di-sease[J]. Inflammopharmacology,2023,31(2):927-941.
BATIHA G E,AL-KURAISHY H M,AL-GAREEB A I,et al. SIRT1 pathway in Parkinson’s disease:a faraway snapshot but so close[J]. Inflammopharmacology,2023,31(1):37-56.
HU C T,LI C,MA Q Y,et al. Inhibition of long nonco-ding RNA SNHG15 ameliorates hypoxia/ischemia-induced neuronal damage by regulating miR-302a-3p/STAT1/NF-κB axis[J]. Yonsei Med J,2021,62(4):325-337.
CHENG J J,ZHANG R,XU Z R,et al. Early glycolytic reprogramming controls microglial inflammatory activation[J]. J Neuroinflammation,2021,18(1):129.
汪雷,胡火军,马金阳,等. 七叶皂苷钠对大鼠脑缺血再灌注损伤的保护作用[J]. 中国临床神经外科杂志,2021,26(8):616-621.
WANG L,HU H J,MA J Y,et al. Protective effect of sodium aescinate on adult rats after cerebral ischemia-reperfusion injury[J]. Chin J Clin Neurosurg,2021,26(8):616-621.
张军,周佩洋. 七叶皂苷钠联合氯吡格雷治疗急性缺血性脑卒中的临床研究[J]. 中西医结合心脑血管病杂志,2020,18(17):2898-2901.
ZHANG J,ZHOU P Y. Clinical study of sodium aescinate combined with clopidogrel in the treatment of acute is-chemic stroke[J]. Chin J Integr Med Cardio Cerebrovasc Dis,2020,18(17):2898-2901.
余恒,宋光捷. 脑纹状体内植入CREB基因修饰的BMSCs对帕金森大鼠学习记忆能力影响的实验研究[J]. 中国免疫学杂志,2020,36(10):1180-1184.
YU H,SONG G J. Intrastriatal implantation of CREB gene-modified BMSCs on learning-memory ability in rats of PD models[J]. Chin J Immunol,2020,36(10):1180-1184.
汪先凯,周大臣,喻宗繁,等. 七叶皂苷钠通过降低4EBP1的磷酸化水平抑制梗阻性黄疸大鼠小胆管增生[J]. 安徽医科大学学报,2021,56(10):1521-1526.
WANG X K,ZHOU D C,YU Z F,et al. Sodium aescinate inhibits the proliferation of small bile ducts in rats with obstructive jaundice by reducing the phosphorylation level of 4EBP1[J]. Acta Univ Med Anhui,2021,56(10):1521-1526.
曹自为,张嵘,李蒙,等. 丹参多酚酸通过SIRT1/HMGB1路径改善大鼠脑缺血/再灌注损伤的机制研究[J]. 中风与神经疾病杂志,2021,38(1):4-8.
CAO Z W,ZHANG R,LI M,et al. The mechanism of salvianolic acids(SA)on improving cerebral ischemic da-mage through silencing information regulator protein 1(SIRT1)/high-mobility group box 1(HMGB1)signal pathway in rat[J]. J Apoplexy Nerv Dis,2021,38(1):4-8.
丁旭,殷紫,邓祥敏,等. 银杏内酯B对帕金森病模型大鼠的保护作用[J]. 中国临床解剖学杂志,2022,40(4):442-446,453.
DING X,YIN Z,DENG X M,et al. Protective effects of ginkgolide B on model rats with Parkinson’s disease[J]. Chin J Clin Anat,2022,40(4):442-446,453.
LI K L,HUANG H Y,REN H,et al. Role of exosomes in the pathogenesis of inflammation in Parkinson’s disease[J]. Neural Regen Res,2022,17(9):1898-1906.
李侑埕,陈立刚,孔睿,等. 七叶皂苷钠通过调节Keap1/Nrf2/HO-1信号通路抑制神经元细胞凋亡改善蛛网膜下腔出血后的早期脑损伤[J]. 广州中医药大学学报,2021,38(4):779-785.
LI Y C,CHEN L G,KONG R,et al. Sodium aescinate improves early brain injury after subarachnoid hemorrhage through regulating Keap1/Nrf2/HO-1 signaling pathway to inhibit neurons apoptosis[J]. China Ind Econ,2021,38(4):779-785.
郭秦乐,霍康,宋银雪,等. β-七叶皂苷钠对大鼠局灶性脑缺血再灌注损伤的保护机制研究[J]. 基因组学与应用生物学,2020,39(7):3312-3317.
GUO Q L,HUO K,SONG Y X,et al. Protective mechanism of β-sodium aescin on focal cerebral ischemia-reperfusion injury in rats[J]. Genom Appl Biol,2020,39(7):3312-3317.
DENG H J,ZHOU C H,HUANG L T,et al. Activation of silent information regulator 1 exerts a neuroprotective effect after intracerebral hemorrhage by deacetylating NF-κB/p65[J]. J Neurochem,2021,157(3):574-585.
0
Views
4
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution