Updated:2024-06-11
    • Effect and mechanism of dioscin on renal injury in septic rats

    • SHEN Xiang

      ,  

      XU Shanggang

      ,  

      HUANG Yanghui

      ,  

      LUO Bin

      ,  

      ZHOU Yufeng

      ,  

      LIANG Longbin

      ,  
    • ZHONGGUO YAOFANG   Vol. 35, Issue 11, Pages: 1334-1338(2024)
    • DOI:10.6039/j.issn.1001-0408.2024.11.09    

      CLC: R965;R285.5
    • Published:15 June 2024

      Received:28 December 2023

      Revised:11 April 2024

    Scan for full text

  • Cite this article

    PDF

  • SHEN Xiang,XU Shanggang,HUANG Yanghui,et al.Effect and mechanism of dioscin on renal injury in septic rats[J].ZHONGGUO YAOFANG,2024,35(11):1334-1338. DOI: 10.6039/j.issn.1001-0408.2024.11.09.

  •  
  •  
    Sections

    Abstract

    OBJECTIVE

    To investigate the effect of dioscin on renal injury in septic rats and its possible mechanism.

    transl

    METHODS

    The septic rat model was induced by using cecal ligation and puncture. Sixty model rats were randomly divided into model group (0.5% sodium carboxymethyl cellulose solution), dioscin low-dose, medium-dose and high-dose groups (30, 60, 120 mg/kg) and dexamethasone group (positive control, 10 mg/kg), with 12 rats per group; another 12 rats were selected as the sham operation group (0.5% sodium carboxymethyl cellulose solution). After 15 minutes of modeling, rats in each group were injected with medicine/0.5% sodium carboxymethyl cellulose solution via the tail vein. Twenty-four hours after administration, the levels of creatinine (Cr), blood urea nitrogen (BUN), neutrophil gelatinase associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), interleukin 6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α) in serum and malondialdehyde (MDA) in renal tissue, superoxide dismutase (SOD) activity and the protein expressions of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NOD-like receptor protein 3 (NLRP3) were detected; renal histomorphology was observed.

    transl

    RESULTS

    Compared with model group, pathological injury of renal tissue was improved significantly in dioscin low-dose, medium-dose and high-dose groups; the levels of Cr, BUN, NGAL, KIM-1, IL-6, IL-1β and TNF-α in serum, MDA level and protein expression of NLRP3 in renal tissue were decreased significantly (P<0.05); SOD activity in renal tissue, protein expressions of Nrf2 and HO-1 were increased significantly (P<0.05), in a dose-dependent manner (P<0.05). The pathological damage of renal tissue in the dioscin high-dose group was similar to dexamethasone group, and there was no statistically significant difference in the levels of the above indicators (P>0.05).

    transl

    CONCLUSIONS

    Dioscin can activate the Nrf2/HO-1 signaling pathway to inhibit NLRP3 inflammasome, and realize the inhibition of inflammatory factors and oxidative stress, so as to protect the kidney injury in sepsis.

    transl

    Keywords

    Nrf2/HO-1 signaling pathway; NOD-like receptor protein 3 inflammasome; sepsis; renal injury

    transl

    脓毒症是感染引发的全身性炎症综合征,会造成多器官功能衰竭,影响患者生命安全,已成为当今临床重症患者的重要死亡原因之一。脓毒症患者肾损伤发生率高达50%,该类患者预后差、死亡率高,且目前尚无有效治疗方法[

    1]
    transl

    薯蓣皂苷为薯蓣根提取物,具有抗肿瘤、抗感染、抗炎、抗病毒等多种药理作用。据报道,薯蓣皂苷可减轻脂多糖诱导的急性肺损伤后的炎症反应和氧化应激[

    2];可抑制核因子κB信号通路,从而改善尿酸诱导的肾小管上皮细胞炎性损伤[3];可通过减轻肾组织氧化应激和细胞凋亡来改善顺铂诱导的急性肾损伤[4]。以上研究表明,薯蓣皂苷具有抗炎、抗氧化和保护肾脏的作用。既往研究表明,薯蓣皂苷能够通过抑制海马组织促炎因子释放来减轻脓毒症小鼠的神经炎症[5],故本研究推测薯蓣皂苷可能通过抑制炎症来缓解脓毒症肾损伤。
    transl

    核因子E2相关因子2(nuclear factor E2-related factor 2,Nrf2)/血红素加氧酶1(heme oxygenase-1,HO-1)信号通路具有调节细胞氧化-抗氧化、炎症反应等多种生物活性,是机体内调节氧化应激的关键途径[

    6]。据报道,激活Nrf2/HO-1信号通路可抑制NOD样受体蛋白3(NOD-like receptor protein 3,NLRP3)表达,从而缓解胰腺炎相关肺损伤[7]。基于此,本研究以盲肠结扎和穿刺法建立脓毒症大鼠模型,并从Nrf2/HO-1信号通路出发探究薯蓣皂苷对脓毒症大鼠肾损伤的影响及可能机制,以期为薯蓣皂苷应用于临床治疗脓毒症及相关肾损伤提供参考。
    transl

    1 材料

    1.1 主要仪器

    HCC300型全自动生化分析仪、Sense型酶标仪均购自上海堃择实业有限公司;B302型光学显微镜购自上海普赫光电科技有限公司;QIAxpert型分光光度计、KST-6000型凝胶成像分析系统均购自上海金鹏分析仪器有限公司。

    transl

    1.2 主要药品与试剂

    薯蓣皂苷原料药(批号YS-U-0701,纯度98%)购自美国Sigma公司;地塞米松注射液(阳性对照药物,批号20220116,规格5 mg/支)购自郑州卓峰制药有限公司;羧甲基纤维素钠(sodium carboxymethyl cellulose,CMC-Na)溶液、BCA蛋白检测试剂盒(批号分别为MK-2823、MK-30116)均购自上海麦克林生化科技股份有限公司;中性粒细胞明胶酶相关脂质运载蛋白(neutrophil gelatinase associated lipocalin,NGAL)、肾损伤分子1(kidney injury molecule-1,KIM-1)、白细胞介素6(interleukin-6,IL-6)、IL-1β、肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)酶联免疫吸附检测(ELISA)试剂盒以及兔源Nrf2、HO-1、NLRP3、甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)一抗和辣根过氧化物酶标记的羊抗兔IgG二抗(批号分别为Y223258、Y234370、Y119623、Y255439、Y236738、Y233432、Y141443、Y137568、Y263823、Y243789)均购自上海翌圣生物科技股份有限公司;苏木精-伊红(HE)染色试剂盒、丙二醛(malondialdehyde,MDA)检测试剂盒、超氧化物歧化酶(superoxide dismutase,SOD)检测试剂盒和RIPA蛋白裂解液(批号分别为D983478、D234482、D498347、D239844)均购自上海帛龙生物科技有限公司。

    transl

    1.3 动物

    本研究所用动物为SPF级雄性SD大鼠,共81只,9~10周龄,体重348~366 g,购自成都达硕实验动物有限公司[生产许可证号:SCXK(川)2021-004]。购入后,大鼠饲养于我院动物实验房内,环境温度(25±0.5) ℃,相对湿度(50±5)%,12 h光/12 h暗循环。本研究通过了我院伦理委员会批准(审批号:JCLS2023第41号)。

    transl

    2 方法

    2.1 动物造模及分组、给药

    参照相关文献[

    8],采用盲肠结扎和穿刺法构建脓毒症大鼠模型:腹腔注射1%戊巴比妥钠(0.04 g/kg)麻醉大鼠,在其前腹部正中切口3 cm,露出盲肠,将粪便拖至盲肠处,用5/0丙烯线结扎,18号针头穿刺盲肠10次,稍微挤压滴出一小滴粪便,将盲肠重新置于腹腔中,逐层缝合伤口。若大鼠在术后3 h出现蜷缩懒动、寒战竖毛、精神萎靡、进食减少、呼吸急促、保护性反射减弱、眼角分泌物增多等情况,说明造模成功[9]。造模过程中,有9只大鼠死亡。将造模后存活的60只大鼠按照随机数字表法分为模型组,薯蓣皂苷低、中、高剂量组和地塞米松组,每组12只。另取12只大鼠除不用丙烯线结扎、针头穿刺外,进行相同实验操作,作为假手术组。
    transl

    造模15 min后,薯蓣皂苷低、中、高剂量组大鼠分别尾静脉注射30、60、120 mg/kg薯蓣皂苷(用0.5%CMC-Na溶液稀释成质量浓度分别为3、6、12 mg/mL的溶液,现配现用)[

    10],地塞米松组大鼠尾静脉注射10 mg/kg地塞米松(用0.5%CMC-Na溶液稀释成质量浓度为1 mg/mL的溶液)[8],注射体积均为10 mL/kg;假手术组、模型组大鼠尾静脉注射10 mL/kg的0.5%CMC-Na溶液。
    transl

    2.2 样本收集

    给药后24 h,对大鼠心脏穿刺取血,室温静置2 h,以3 000 r/min离心10 min,收集上层血清,置于-20 ℃冰箱中保存,备用;取血后,脱颈椎处死大鼠,快速取出肾组织,将左肾用10%甲醛固定,右肾保存于-80 ℃冰箱中备用。

    transl

    2.3 血清中肌酐、尿素氮、NGALKIM-1、IL-6、IL-1βTNF-α水平检测

    取出血清,以全自动生化分析仪检测血清中肌酐(creatinine,Cr)、尿素氮(blood urea nitrogen,BUN)水平,采用ELISA法以酶标仪检测血清中NGAL、KIM-1、IL-6、IL-1β、TNF-α水平。

    transl

    2.4 肾组织病理形态学观察

    取固定于10%甲醛中的左肾组织适量,常规石蜡包埋、切片(厚6 µm),行HE染色、二甲苯透明、封片后,在光学显微镜下观察肾组织病理形态学变化并拍照。

    transl

    2.5 肾组织中MDA水平、SOD活性检测

    取冻存的右肾组织约30 mg,解冻后制备组织匀浆,分别采用硫代巴比妥酸比色法、黄嘌呤氧化酶法以分光光度计检测肾组织中MDA水平和SOD活性。

    transl

    2.6 肾组织中Nrf2、HO-1、NLRP3蛋白表达检测

    采用Western blot法检测。取冻存的右肾组织约50 mg,解冻后制备匀浆,以蛋白裂解液裂解20 min提取组织中总蛋白,采用BCA法定量蛋白浓度,然后电泳分离蛋白样品并转膜;室温下将膜封闭2 h后,在4 ℃下与相应的一抗[Nrf2(稀释比例1∶790)、HO-1(稀释比例1∶790)、NLRP3(稀释比例1∶830)、GAPDH(稀释比例1∶850)]一起孵育24 h;室温下用二抗(稀释比例1∶1 700)孵育1 h后,以电化学发光试剂显影,使用Image J软件对蛋白表达进行定量分析。以目的蛋白与内参蛋白(GAPDH)条带灰度值的比值表示目的蛋白的表达量。

    transl

    2.7 统计学方法

    使用SPSS 25.0软件对数据进行统计分析。计量资料以x±s表示,多组间比较采用单因素方差分析,组间两两比较采用SNK-q检验。检验水准α=0.05。

    transl

    3 结果

    3.1 血清中CrBUNNGALKIM-1水平检测结果

    与假手术组比较,模型组大鼠血清中Cr、BUN、NGAL、KIM-1水平均显著升高(P<0.05);与模型组比较,各给药组大鼠血清中上述指标水平均显著降低(P<0.05),且薯蓣皂苷的作用具有剂量依赖性(P<0.05);薯蓣皂苷高剂量组大鼠上述指标水平与地塞米松组比较,差异均无统计学意义(P>0.05)。结果见表1

    transl

    表1  6组大鼠血清中CrBUNNGALKIM-1水平比较(x±sn=12)
    组别Cr/(μmol/L)BUN/(mmol/L)NGAL/(ng/L)KIM-1/(ng/L)
    假手术组 38.25±4.06 6.45±1.14 26.16±3.15 19.46±2.05
    模型组 80.85±8.25a 18.95±3.38a 144.25±9.27a 92.45±7.30a
    薯蓣皂苷低剂量组 64.56±7.02b 13.64±2.44b 96.56±9.15b 64.31±6.62b
    薯蓣皂苷中剂量组 55.48±6.22bc 10.86±2.06bc 60.19±7.23bc 47.60±4.13bc
    薯蓣皂苷高剂量组 44.62±4.73bcd 7.80±1.52bcd 37.51±4.10bcd 29.01±3.58bcd
    地塞米松组 43.18±4.52bcd 7.73±1.57bcd 35.38±4.37bcd 27.58±3.17bcd

    a:与假手术组比较,P<0.05;b:与模型组比较,P<0.05;c:与薯蓣皂苷低剂量组比较,P<0.05;d:与薯蓣皂苷中剂量组比较,P<0.05。

    icon Download:  CSV icon Download:  Table Images

    3.2 血清中IL-6、IL-1βTNF-α水平检测结果

    与假手术组比较,模型组大鼠血清中IL-6、IL-1β、TNF-α水平均显著升高(P<0.05);与模型组比较,各给药组大鼠血清中IL-6、IL-1β、TNF-α水平均显著降低(P<0.05),且薯蓣皂苷的作用具有剂量依赖性(P<0.05);薯蓣皂苷高剂量组大鼠上述指标水平与地塞米松组比较,差异均无统计学意义(P>0.05)。结果见表2

    transl

    表2  6组大鼠血清中IL-6、IL-1βTNF-α水平比较(x±sn=12,ng/mL
    组别IL-6IL-1βTNF-α
    假手术组 7.12±0.82 42.16±3.15 51.35±6.77
    模型组 16.46±2.13a 203.16±14.50a 141.36±11.18a
    薯蓣皂苷低剂量组 13.04±2.01b 148.45±9.17b 119.48±13.05b
    薯蓣皂苷中剂量组 10.35±1.76bc 110.48±9.02bc 110.95±13.59bc
    薯蓣皂苷高剂量组 8.03±1.13bcd 76.15±7.35bcd 86.15±9.67bcd
    地塞米松组 8.15±1.16bcd 73.46±6.92bcd 82.48±8.35bcd

    a:与假手术组比较,P<0.05;b:与模型组比较,P<0.05;c:与薯蓣皂苷低剂量组比较,P<0.05;d:与薯蓣皂苷中剂量组比较,P<0.05。

    icon Download:  CSV icon Download:  Table Images

    3.3 肾组织病理形态学观察结果

    假手术组大鼠肾组织未见明显病理变化;模型组大鼠肾组织可见系膜增生、肾小管萎缩,肾小管间质被大量炎症细胞浸润;薯蓣皂苷低剂量组大鼠肾组织可见系膜增生、大量炎症细胞浸润肾小管;薯蓣皂苷中剂量组大鼠肾组织炎症浸润情况缓解;薯蓣皂苷高剂量组和地塞米松组大鼠肾组织可观察到正常的肾小管。结果见图1

    transl

    fig

    图1  6组大鼠肾组织病理形态学观察结果(HE染色)

    黑色箭头:炎症细胞浸润。

    icon Download:  Full-size image | High-res image | Low-res image

    3.4 肾组织中MDA水平和SOD活性检测结果

    与假手术组比较,模型组大鼠肾组织中MDA水平显著升高(P<0.05),SOD活性显著降低(P<0.05);与模型组比较,各给药组大鼠肾组织中MDA水平均显著降低(P<0.05),SOD活性均显著升高(P<0.05),且薯蓣皂苷的作用具有剂量依赖性(P<0.05);薯蓣皂苷高剂量组大鼠肾组织中上述指标水平与地塞米松组比较,差异均无统计学意义(P>0.05)。结果见表3

    transl

    表3  6组大鼠肾组织中MDA水平和SOD活性比较(x±sn=12)
    组别MDA/(nmol/mg)SOD/(U/mg)
    假手术组 5.46±0.60 116.15±8.08
    模型组 20.16±3.18a 43.48±5.60a
    薯蓣皂苷低剂量组 15.23±3.25b 64.02±5.96b
    薯蓣皂苷中剂量组 11.60±2.17bc 82.89±7.25bc
    薯蓣皂苷高剂量组 7.73±1.02bcd 102.38±9.03bcd
    地塞米松组 7.86±1.26bcd 105.15±8.52bcd

    a:与假手术组比较,P<0.05;b:与模型组比较,P<0.05;c:与薯蓣皂苷低剂量组比较,P<0.05;d:与薯蓣皂苷中剂量组比较,P<0.05。

    icon Download:  CSV icon Download:  Table Images

    3.5 肾组织中Nrf2、HO-1、NLRP3蛋白表达检测结果

    与假手术组比较,模型组大鼠肾组织中Nrf2、HO-1蛋白表达量显著降低(P<0.05),NLRP3蛋白表达量显著升高(P<0.05);与模型组比较,各给药组大鼠肾组织中Nrf2、HO-1蛋白表达量均显著升高(P<0.05),NLRP3蛋白表达量均显著降低(P<0.05),且薯蓣皂苷的作用具有剂量依赖性(P<0.05);薯蓣皂苷高剂量组大鼠上述蛋白表达量与地塞米松组比较,差异均无统计学意义(P>0.05)。结果见图2表4

    transl

    fig

    图2  6组大鼠肾组织中Nrf2、HO-1、NLRP3蛋白表达的电泳图

    icon Download:  Full-size image | High-res image | Low-res image
    表4  6组大鼠肾组织中Nrf2、HO-1、NLRP3蛋白表达量比较(x±sn=12)
    组别Nrf2/GAPDHHO-1/GAPDHNLRP3/GAPDH
    假手术组 1.95±0.15 2.76±0.38 0.41±0.06
    模型组 0.23±0.03a 0.09±0.01a 1.68±0.20a
    薯蓣皂苷低剂量组 0.67±0.08b 0.72±0.05b 1.30±0.18b
    薯蓣皂苷中剂量组 1.02±0.10bc 1.13±0.08bc 0.98±0.13bc
    薯蓣皂苷高剂量组 1.37±0.11bcd 1.76±0.12bcd 0.52±0.08bcd
    地塞米松组 1.43±0.13bcd 1.69±0.17bcd 0.49±0.09bcd

    a:与假手术组比较,P<0.05;b:与模型组比较,P<0.05;c:与薯蓣皂苷低剂量组比较,P<0.05;d:与薯蓣皂苷中剂量组比较,P<0.05。

    icon Download:  CSV icon Download:  Table Images

    4 讨论

    肾脏对于维持机体中水、酸碱平衡和排泄代谢等具有重要作用。当出现肾损伤后,肾小球滤过功能丧失,Cr、BUN在体内积累,危害机体健康,而脓毒症为常见的肾损伤诱因。NGAL可维持肾组织正常功能,炎症出现时其水平会升高,其在肾损伤检测中的灵敏性和特异性都很强[

    11]。正常情况下,KIM-1在肾脏近曲小管细胞中低表达;当肾损伤后,其表达升高,从而促进上皮细胞黏附[12]。本研究发现,脓毒症大鼠血清中Cr、BUN、NGAL、KIM-1均呈高表达,提示脓毒症发生后导致肾损伤严重。地塞米松是一种糖皮质激素类药物,具有抗炎、抗过敏和抗休克等作用,且可以减轻脓毒症患者的组织损伤和器官(心、肾)功能衰竭[13]。而脓毒症是一种由感染引起的全身性炎症反应综合征,常常伴随着休克和器官功能衰竭。因此,本研究选择地塞米松作为阳性对照药物来探讨薯蓣皂苷对脓毒症大鼠肾损伤的影响。本研究结果显示,在使用薯蓣皂苷干预后,脓毒症大鼠血清中Cr、BUN、NGAL、KIM-1水平均显著降低,且高剂量薯蓣皂苷与地塞米松的效果相当,提示薯蓣皂苷可能对脓毒症肾损伤有一定缓解作用。
    transl

    脓毒症通过多种途径影响肾损伤,而炎症介质过度释放与脓毒症肾损伤的发生发展关系密切。IL-6、IL-1β、TNF-α作为标志性炎症介质,在发生脓毒症肾损伤后其水平会升高[

    14]。MDA、SOD作为氧化应激指标,在发生脓毒症肾损伤后MDA水平升高、SOD活性降低,产生过度氧化应激[14]。本研究中,脓毒症大鼠血清中IL-6、IL-1β、TNF-α水平升高,肾组织中MDA水平升高、SOD活性降低,且肾组织经HE染色可见系膜增生、肾小管萎缩严重以及大量炎症细胞浸润肾小管间质等病理变化。这提示脓毒症大鼠肾损伤严重,炎症指标、氧化应激指标均出现异常,肾功能出现紊乱。而薯蓣皂苷可降低脓毒症大鼠血清中炎症因子水平和肾组织中MDA水平,升高肾组织中SOD活性,改善肾组织病理损伤,且高剂量薯蓣皂苷的改善效果与地塞米松相近。这提示薯蓣皂苷能够缓解脓毒症造成的炎症和氧化应激,从而实现对肾脏的保护。
    transl

    Nrf2是调节细胞对抗外来异物和氧化损伤的关键转录因子,参与修复炎症、对抗氧化应激等多种生理过程。正常情况下,Nrf2与抗氧化反应元件相互作用,调节机体氧化还原平衡;当细胞处于应激状态时,Nrf2入核启动抗氧化基因HO-1的表达,从而实现对机体的保护[

    15]。相关研究发现,上调HO-1后可增加SOD活性[16];激活Nrf2/HO-1信号通路可以抑制IL-6、IL-1β、TNF-α的表达[17]。在发生脓毒症肾损伤后,Nrf2、HO-1蛋白处于低表达状态,机体严重的损伤导致Nrf2/HO-1信号通路功能减弱,对肾损伤的保护作用减小[18]。NLRP3作为炎性小体,在细胞损伤后其水平会升高[19]。本研究中,脓毒症大鼠肾组织中Nrf2、HO-1蛋白表达量降低,NLRP3蛋白表达量升高。这提示大鼠发生脓毒症肾损伤后,Nrf2/HO-1信号通路受机体紊乱的影响处于抑制状态,机体抗氧化能力降低,导致机体炎症因子、氧化应激指标发生紊乱。经薯蓣皂苷干预后,脓毒症大鼠肾组织中Nrf2、HO-1蛋白表达量升高,NLRP3蛋白表达量降低,且高剂量薯蓣皂苷和地塞米松的作用相当。这提示薯蓣皂苷可能是通过激活Nrf2/HO-1信号通路发挥抗氧化作用,实现对炎性小体和炎症因子的抑制,增加SOD活性,从而减轻肾脏中因脓毒症导致的炎症浸润、过度氧化应激情况,最终缓解脓毒症症状。
    transl

    综上所述,薯蓣皂苷可能是通过激活Nrf2/HO-1信号通路抑制NLRP3炎性小体,实现对炎症因子表达和氧化应激的抑制,从而改善脓毒症肾损伤。但是本研究只初步探究了薯蓣皂苷对脓毒症肾损伤的影响及可能机制,未设置Nrf2/HO-1信号通路抑制剂/激动剂来进行机制验证,接下来本课题组将进一步开展相关研究。

    transl

    参考文献

    1

    ZARBOCK ANADIM M KPICKKERS Pet al. Sepsis-associated acute kidney injury:consensus report of the 28th Acute Disease Quality Initiative Workgroup[J]. Nat Rev Nephrol2023196):401-417. [Baidu Scholar] 

    2

    陈彬彬陈丹戴爱国. 薯蓣皂苷减轻脂多糖诱导的急性肺损伤中的炎症反应、氧化应激和Th17/Treg细胞失平衡[J]. 中国组织化学与细胞化学杂志2022315):461-467. [Baidu Scholar] 

    CHEN B BCHEN DDAI A G. Dioscin alleviates inflammatory response,oxidative stress and Th17/Treg cell imbalance in lipopolysaccharide induced acute lung injury[J]. Chin J Histochem Cytochem2022315):461-467. [Baidu Scholar] 

    3

    刘鹏王晨王昀. 薯蓣皂苷抑制NF-κB信号通路改善尿酸诱导的肾小管上皮细胞炎性损伤的机制研究[J]. 中国临床药理学与治疗学20222710):1099-1105. [Baidu Scholar] 

    LIU PWANG CWANG Yet al. Dioscin attenuates inflammatory injury in uric acid-induced renal tubular epithelial cells by suppression of NF-κB signaling pathway[J]. Chin J Clin Pharmacol Ther20222710):1099-1105. [Baidu Scholar] 

    4

    王爽金圣子刘云. 薯蓣皂苷对顺铂诱导急性肾损伤模型大鼠的保护作用[J]. 中国兽医科学2022529):1199-1206. [Baidu Scholar] 

    WANG SJIN S ZLIU Y. Protective effect of dioscin on cisplatin-induced acute kidney injury model in rat[J]. Chin Vet Sci2022529):1199-1206. [Baidu Scholar] 

    5

    YANG RCHEN WLU Yet al. Dioscin relieves endotoxemia induced acute neuro-inflammation and protect neurogenesis via improving 5-HT metabolism[J]. Sci Rep2017740035. [Baidu Scholar] 

    6

    SEDIGHI MBALUCHNEJADMOJARAD TAFSHIN-MAJD Set al. Anti-aging klotho protects SH-SY5Y cells against amyloid β1-42 neurotoxicity:involvement of Wnt1/pCrEB/Nrf2/HO-1 signaling[J]. J Mol Neurosci2021711):19-27. [Baidu Scholar] 

    7

    GAO Z MSUI J DFAN Ret al. Emodin protects against acute pancreatitis-associated lung injury by inhibi- ting NLRP3 inflammasome activation via Nrf2/HO-1 signaling[J]. Drug Des Devel Ther2020141971-1982. [Baidu Scholar] 

    8

    RiTTIRSCH DHUBER-LANG M SFLIERL M Aet al. Immunodesign of experimental sepsis by cecal ligation and puncture[J]. Nat Protoc200941):31-36. [Baidu Scholar] 

    9

    楼屹朱之青谢莉莉. 电针“足三里”对脓毒症大鼠肠黏膜免疫屏障的影响及机制研究[J]. 针刺研究2022475):386-392. [Baidu Scholar] 

    LOU YZHU Z QXIE L Let al. Study on the effect and machanism of electroacupuncture at “Zusanli” on the immune barrier of intestinal mucosa in sepsis rats[J]. Acupunct Res2022475):386-392. [Baidu Scholar] 

    10

    武豪杰张明辉洪成智. 薯蓣皂苷对滑膜炎大鼠症状的改善作用和对TLR2-NF-κB信号通路的调节作用及其机制[J]. 吉林大学学报(医学版)2021474):943-950. [Baidu Scholar] 

    WU H JZHANG M HHONG C Z. Improvement effect of diosgenin on symptoms of synovitis rats and its regulatory effect on TLR2-NF-κB signaling pathway and mechanism[J]. J Jilin Univ Med Ed2021474):943-950. [Baidu Scholar] 

    11

    熊玮彭斌高智. 松果菊苷对尿毒症大鼠肾损伤的影响及机制[J]. 中国药房2024352):198-203. [Baidu Scholar] 

    XIONG WPENG BGAO Z. Effects of echinacoside on renal injury in uremia rats and its mechanism[J]. China Pharm2024352):198-203. [Baidu Scholar] 

    12

    ALMAGHRABI S Y. Apigenin ameliorates hypercho- lesterolemic-induced kidney injury via modulating renal KIM-1,Fn1,and Nrf2 signaling pathways[J]. Eur Rev Med Pharmacol Sci2023273):1155-1169. [Baidu Scholar] 

    13

    王其政林小飞朱红利. 地塞米松联合注射用头孢哌酮钠舒巴坦钠对儿童脓毒症的疗效及对血清PCT、Presepsin及NT-proBNP的影响[J]. 药物评价研究2022451):118-123. [Baidu Scholar] 

    WANG Q ZLIN X FZHU H L. Influences of dexamethasone combined with cefoperazone and sulbactam on efficacy of sepsis in children and serum PCT,presepsin and NT-proBNP[J]. Drug Eval Res2022451):118-123. [Baidu Scholar] 

    14

    PENG Y QLI YLI Het al. Shikonin attenuates kidney tubular epithelial cells apoptosis,oxidative stress,and inflammatory response through nicotinamide adenine dinucleotide phosphate oxidase 4/PTEN pathway in acute kidney injury of sepsis model[J]. Drug Dev Res2022835):1111-1124. [Baidu Scholar] 

    15

    CHOI Y H. Activation of Nrf2/HO-1 antioxidant signaling correlates with the preventive effect of loganin on oxidative injury in ARPE-19 human retinal pigment epithelial cells[J]. Genes Genomics2023453):271-284. [Baidu Scholar] 

    16

    WANG S HTSAI K LCHOU W Cet al. Quercetin mitigates cisplatin-induced oxidative damage and apoptosis in cardiomyocytes through Nrf2/HO-1 signaling pathway[J]. Am J Chin Med2022505):1281-1298. [Baidu Scholar] 

    17

    CAI Y JLI X LTAN X Yet al. Vitamin D suppresses ferroptosis and protects against neonatal hypoxic-ischemic encephalopathy by activating the Nrf2/HO-1 pathway[J]. Transl Pediatr20221110):1633-1644. [Baidu Scholar] 

    18

    ZHANG JWANG C SKANG Ket al. Loganin atte- nuates septic acute renal injury with the participation of AKT and Nrf2/HO-1 signaling pathways[J]. Drug Des Devel Ther202115501-513. [Baidu Scholar] 

    19

    LI NXIONG RHE R Yet al. Mangiferin mitigates lipopolysaccharide-induced lung injury by inhibiting NLRP3 inflammasome activation[J]. J Inflamm Res2021142289-2300. [Baidu Scholar] 

    0

    Views

    0

    Downloads

    0

    CSCD

    Alert me when the article has been cited
    Submit
    Tools
    Download
    Export Citation
    Share
    Add to favorites
    Add to my album

    Related Articles

    No data

    Related Author

    No data

    Related Institution

    No data
    0