浏览全部资源
扫码关注微信
秦皇岛市第一医院药学部,河北 秦皇岛 066000
Published:15 June 2024,
Received:24 October 2023,
Revised:19 March 2024,
扫 描 看 全 文
于小杰,赵艳敏,胡爱玲等.COPD患者吸入制剂用药不依从风险预测模型构建 Δ[J].中国药房,2024,35(11):1391-1395.
YU Xiaojie,ZHAO Yanmin,HU Ailing,et al.Construction of risk prediction model for non-compliance with inhalation medication in COPD patients[J].ZHONGGUO YAOFANG,2024,35(11):1391-1395.
于小杰,赵艳敏,胡爱玲等.COPD患者吸入制剂用药不依从风险预测模型构建 Δ[J].中国药房,2024,35(11):1391-1395. DOI: 10.6039/j.issn.1001-0408.2024.11.19.
YU Xiaojie,ZHAO Yanmin,HU Ailing,et al.Construction of risk prediction model for non-compliance with inhalation medication in COPD patients[J].ZHONGGUO YAOFANG,2024,35(11):1391-1395. DOI: 10.6039/j.issn.1001-0408.2024.11.19.
目的
2
构建慢性阻塞性肺疾病患者吸入制剂用药不依从风险预测模型。
方法
2
回顾性分析秦皇岛市第一医院咳喘药学服务门诊2021年10月-2023年10月收治的365例慢性阻塞性肺疾病患者信息,将2021年10月-2023年6月收治的患者作为模型组(
n
=303),2023年7-10月收治的患者作为验证组(
n
=62),模型组分为依从亚组(
n
=126)和不依从亚组(
n
=177),通过单因素分析结合多因素Logistic回归分析患者使用吸入制剂不依从的危险因素。根据回归分析结果建立风险预测模型,并以验证组患者为对象,评价所建模型预测的准确性。
结果
2
多因素Logistic回归分析显示,同时使用2个吸入制剂(OR=3.730,95%CI为1.996~6.971,
P
<0.001)、一年内急性加重次数≥2次(OR=2.509,95%CI为1.509~4.173,
P
<0.001)、吸烟(OR=2.167,95%CI为1.309~3.588,
P
=0.003)、合并焦虑/抑郁(OR=2.112,95%CI为1.257~3.499,
P
=0.004)、改良版英国医学研究委员会呼吸困难问卷评级≥2级(OR=1.701,95%CI为1.014~2.853,
P
=0.044)是患者使用吸入制剂不依从的危险因素。基于此建立风险预测模型,绘制受试者工作特征曲线,可得模型组、验证组的曲线下面积分别为0.836、0.928,模型预测的总体准确率为88.71%。
结论
2
基于同时使用2个吸入制剂、一年内急性加重次数≥2次、吸烟、合并焦虑/抑郁、mMRC评级≥2级建立的风险预测模型对COPD患者使用吸入制剂不依从风险具有一定的预测价值。
OBJECTIVE
2
To construct a risk prediction model for non-compliance with inhaled medication in patients with chronic obstructive pulmonary disease (COPD).
METHODS
2
A retrospective analysis was conducted on 365 COPD patients admitted to the cough and wheeze pharmaceutical care clinic of the First Hospital of Qinhuangdao from October 2021 to October 2023. The patients admitted from October 2021 to June 2023 were selected as the model group (
n
=303), and the patients admitted from July to October 2023 were selected as the validation group (
n
=62). The model group was divided into compliance subgroup (
n
=126) and non-compliance subgroup (
n
=177). Univariate analysis combined with multivariate Logistic regression analysis were used to analyze the risk factors for non-compliance with inhaled formulations in patients; the risk prediction model was established through regression analysis, and the accuracy of the model prediction was evaluated based on the validation group of patients.
RESULTS
2
Multivariate Logistic regression analysis showed that simultaneous use of 2 inhaled formulations (OR=3.730, 95%CI 1.996-6.971,
P
<0.001), the number of acute exacerbations within one year ≥2 (OR=2.509, 95%CI 1.509-4.173,
P
<0.001), smoking (OR=2.167, 95%CI 1.309-3.588,
P
=0.003), complicated with anxiety/depression (OR=2.112, 95%CI 1.257-3.499,
P
=0.004) and mMRC grading≥2 levels (OR=1.701, 95%CI 1.014-2.853,
P
=0.044) were risk factors for non-compliance with inhaled preparations. Based on this, a risk prediction model was established and the ROC curve was drawn. The areas under the curve of the model group and validation group were 0.836 and 0.928, and the overall accuracy of the model’s prediction was 88.71%.
CONCLUSIONS
2
The predictive model based on the simultaneous use of 2 inhaled formulations, the number of acute exacerbations within one year ≥2, smoking, complicated with anxiety/depression, mMRC grading ≥2 levels has certain predictive value for the risk of non-compliance with inhaled formulations for COPD patients.
慢性阻塞性肺疾病吸入制剂依从性风险预测模型危险因素
inhaled formulationscompliancerisk prediction modelrisk factors
中华医学会呼吸病学分会慢性阻塞性肺疾病学组.慢性阻塞性肺疾病诊治指南:2021年修订版[J]. 中华结核和呼吸杂志,2021,44(3):170-205.
Chronic Obstructive Pulmonary Disease Group of the Respiratory Branch of the Chinese Medical Association.Guidelines for the diagnosis and management of chronic obstructive pulmonary disease:revised version 2021[J]. Chin J Tuberc Respir Dis,2021,44(3):170-205.
慢性阻塞性肺疾病急性加重诊治专家组.慢性阻塞性肺疾病急性加重诊治中国专家共识:2023年修订版[J]. 国际呼吸杂志,2023,43(2):132-149.
Expert Group on the Diagnosis and Treatment of Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Expert consensus on the acute exacerbation of chronic obstructive pulmonary disease in China :revision in 2023[J]. Int J Respir,2023,43(2):132-149.
姚莉,胡兰,范芳芳,等. 对影响慢性气道疾病住院患者规范使用干粉吸入剂因素的分析[J]. 医药导报,2016,35(11):1272-1275.
YAO L,HU L,FAN F F,et al. Analysis of factors affec- ting the standardized use of dry powder inhalers in inpatients with chronic airway diseases[J]. Her Med,2016,35(11):1272-1275.
OVCHINIKOVA L,SMITH L,BOSNIC-ANTICEVICH S. Inhaler technique maintenance:gaining an understan- ding from the patient’s perspective[J]. J Asthma,2011,48(6):616-624.
刘冀衡,谢倩,黄丽,等. 慢性阻塞性肺疾病患者使用吸入剂用药依从性的研究进展[J]. 中南药学,2022,20(5):1113-1117.
LIU J H,XIE Q,HUANG L,et al. Advances in medication compliance of inhalers in patients with chronic obstructive pulmonary disease[J]. Cent South Pharm,2022,20(5):1113-1117.
陈建培. 基于目视管理法的可视化健康教育对慢性阻塞性肺疾病患者吸入制剂使用依从性的影响研究[D]. 苏州:苏州大学,2021.
CHEN J P. Application research of visual health education based on visual management method to the comp- liance of patients with chronic obstructive pulmonary disease in the use of inhaled preparations[D]. Suzhou: Soochow University,2021.
袁菱,杨青,蔡宁,等. MMAS-8评价COPD患者吸入DPI类药物依从性的信效度分析及应用[J]. 中国医药导报,2022,19(5):60-63.
YUAN L,YANG Q,CAI N,et al. Reliability and validity analysis and application of MMAS-8 in evaluating the compliance of inhaled DPIs in patients with COPD[J]. China Med Her,2022,19(5):60-63.
陈娟,雷明,李沙沙,等. 慢性阻塞性肺疾病患者使用吸入装置的用药评价与分析[J]. 中国临床药理学杂志,2019,35(11):1179-1182.
CHEN J,LEI M,LI S S,et al. Evaluating and analyzing the use of inhalation devices in chronic obstructive pulmonary disease patients[J]. Chin J Clin Pharmacol,2019,35(11):1179-1182.
于小杰,杨文明,宋萍萍,等. 碳青霉烯类耐药肺炎克雷伯菌致血流感染风险预测模型的构建[J]. 中国药房,2024,35(1):75-79.
YU X J,YANG W M,SONG P P,et al. Construction of a risk prediction model for bloodstream infection induced by carbapenem-resistant Klebsiella pneumoniae[J]. China Pharm,2024,35(1):75-79.
刘一瑾. 血流感染金黄色葡萄球菌的耐药性、甲氧西林耐药株感染风险预测模型的初步建立及评价[D]. 石家庄:河北医科大学,2021.
LIU Y J. Drug resistance of Staphylococcus aureus in bloodstream infection,preliminary establishment and evaluation of risk prediction model for infection of methicillin-resistant strains[D].Shijiazhuang:Hebei Medical University,2021.
宋子璇,刘卫平. 基于人工神经网络及logistic回归的耐碳青霉烯类革兰阴性菌感染预测模型研究[J]. 中国消毒学杂志,2023,40(4):276-279.
SONG Z X,LIU W P. Prediction model of carbapenem-resistant gram-negative bacteria infection based on artificial neural network and logistic regression[J]. Chin J Disinfect,2023,40(4):276-279.
SEVERIN A,TABEI K,TENOVER F,et al. High level oxacillin and vancomycin resistance and altered cell wall composition in Staphylococcus aureus carrying the staphylococcal mecA and the enterococcal vanA gene complex[J]. J Biol Chem,2004,279(5):3398-3407.
PLAZA V,GINER J,CURTO E,et al. Assessing adhe- rence by combining the test of adherence to inhalers with pharmacy refill records[J]. J Investig Allergol Clin Immunol,2021,31(1):58-64.
HUMENBERGER M,HORNER A,LABEK A,et al. Adherence to inhaled therapy and its impact on chronic obstructive pulmonary disease (COPD)[J]. BMC Pulm Med,2018,18(1):163.
张素平,黄巧妹,廖洪娟,等. 哮喘/慢性阻塞性肺疾病患者吸入剂用药依从性调查[J]. 中国医院药学杂志,2018,38(7):777-780.
ZHANG S P,HUANG Q M,LIAO H J,et al. Investigation on adherence to inhalants among patients with asthma or chronic obstructive pulmonary diseases[J]. Chin J Hosp Pharm,2018,38(7):777-780.
IERODIAKONOU D,SIFAKI-PISTOLLA D,KAMPOURAKI M,et al. Adherence to inhalers and comorbidities in COPD patients. A cross-sectional primary care study from Greece[J]. BMC Pulm Med,2020,20(1):253.
MANNINO D,BOGART M,WU B,et al. Adherence and persistence to once-daily single-inhaler versus multiple-inhaler triple therapy among patients with chronic obstructive pulmonary disease in the USA:a real-world study[J]. Respir Med,2022,197:106807.
IHEANACHO I,ZHANG S Y,KING D,et al. Economic burden of chronic obstructive pulmonary disease (COPD):a systematic literature review[J]. Int J Chron Obstruct Pulmon Dis,2020,15:439-460.
ZOECKLER N,KENN K,KUEHL K,et al. Illness perceptions predict exercise capacity and psychological well-being after pulmonary rehabilitation in COPD patients[J]. J Psychosom Res,2014,76(2):146-151.
温燕妮,林海英,夏红波. 稳定期COPD患者吸入装置使用不依从风险预测模型的建立[J]. 安徽医专学报,2022,21(1):134-136.
WEN Y N,LIN H Y,XIA H B. Establishment of a noncompliant risk prediction model for the use of inhaled devices in stable COPD patients[J]. J Anhui Med Coll,2022,21(1):134-136.
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution