浏览全部资源
扫码关注微信
1.江南大学附属医院药学部,江苏 无锡 214000
2.徐州医科大学药学院,江苏 徐州 221000
Published:30 July 2024,
Received:20 February 2024,
Revised:25 June 2024,
扫 描 看 全 文
庄永如,宋金方.钠-葡萄糖耦联转运体2抑制剂的药物基因组学研究进展 Δ[J].中国药房,2024,35(14):1790-1794.
ZHUANG Yongru,SONG Jinfang.Study progress on pharmacogenomics of sodium-glucose linked transporter 2 inhibitors[J].ZHONGGUO YAOFANG,2024,35(14):1790-1794.
庄永如,宋金方.钠-葡萄糖耦联转运体2抑制剂的药物基因组学研究进展 Δ[J].中国药房,2024,35(14):1790-1794. DOI: 10.6039/j.issn.1001-0408.2024.14.21.
ZHUANG Yongru,SONG Jinfang.Study progress on pharmacogenomics of sodium-glucose linked transporter 2 inhibitors[J].ZHONGGUO YAOFANG,2024,35(14):1790-1794. DOI: 10.6039/j.issn.1001-0408.2024.14.21.
钠-葡萄糖耦联转运体2抑制剂(SGLT2i)是一类新型口服降糖药物,广泛应用于2型糖尿病患者的降糖治疗,但由于患者的遗传背景差异,常导致药物治疗的反应性多样。本文通过综述SGLT2i的药物基因组学研究报道,发现
UGT1A9
、
UGT2B4
、
SLC5A2
、
ABCB1
、
PNPLA3
、
WFS1
基因变异可能影响SGLT2i的药代动力学以及SGLT2i在改善非酒精性脂肪性肝病、减重等方面的降糖外效应,但尚无足够的临床证据支持基因多态性影响SGLT2i的降糖疗效。
odium-glucose linked transporter 2 inhibitors(SGLT2i) are novel oral hypoglycaemic agents and are widely used for hypoglycemic therapy in patients with type 2 diabetes mellitus, but differences in the genetic backgrounds of patients often lead to variable responsiveness to drug therapy. By summarizing the pharmacogenomic studies of SGLT2i, the article found that the genetic variants of
UGT1A9
,
UGT2B4
,
SLC5A2
,
ABCB1
,
PNPLA3
and
WFS1
may influence the pharmacokinetics of SGLT2i and the external hypoglycemic effects of SGLT2i in improving non-alcoholic fatty liver disease, weight loss and so on, but there is no clinical evidence that genetic polymorphisms affect the hypoglycemic efficacy of SGLT2i.
基因多态性钠-葡萄糖耦联转运体2抑制剂个体差异药物基因组学药代动力学药效动力学
SGLT2iindividual differencespharmacogenomicspharmacokineticspharmacodynamics
IDF. Diabetes atlas 10th ed:2021[EB/OL]. [2024-01-20]. https://diabetesatlas.org/idfawp/resource-files/2021/07/IDF_ Atlas_10th_Edition_2021.pdfhttps://diabetesatlas.org/idfawp/resource-files/2021/07/IDF_Atlas_10th_Edition_2021.pdf.
FRANCKE S,MAMIDI R N,SOLANKI B,et al. In vitro metabolism of canagliflozin in human liver,kidney,intestine microsomes,and recombinant uridine diphosphate glucuronosyltransferases(UGT)and the effect of genetic variability of UGT enzymes on the pharmacokinetics of canagliflozin in humans[J]. J Clin Pharmacol,2015,55(9):1061-1072.
PEREIRA M J,LUNDKVIST P,KAMBLE P G,et al. A randomized controlled trial of dapagliflozin plus once-weekly exenatide versus placebo in individuals with obesity and without diabetes:metabolic effects and markers associated with bodyweight loss[J]. Diabetes Ther,2018,9(4):1511-1532.
ERIKSSON J W,LUNDKVIST P,JANSSON P A,et al. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes:a double-blind randomised placebo-controlled study[J]. Diabetologia,2018,61(9):1923-1934.
HEERSPINK H J L,SJÖSTRÖM C D,INZUCCHI S E,et al. Reduction in albuminuria with dapagliflozin cannot be predicted by baseline clinical characteristics or changes in most other risk markers[J]. Diabetes Obes Metab,2019,21(3):720-725.
PETRYKIV S I,LAVERMAN G D,ZEEUW D D,et al. The albuminuria-lowering response to dapagliflozin is variable and reproducible among individual patients[J]. Diabetes Obes Metab,2017,19(10):1363-1370.
XIE L D,HAN J,CHENG Z F,et al. Efficacy and safety of bexagliflozin compared with dapagliflozin as an adjunct to metformin in Chinese patients with type 2 diabetes mellitus:a 24-week,randomized,double-blind,active-controlled,phase 3 trial[J]. J Diabetes,2024,16(4):e13526.
SALAH H M,AL’AREF S J,KHAN M S,et al. Effects of sodium-glucose cotransporter 1 and 2 inhibitors on cardiovascular and kidney outcomes in type 2 diabetes:a meta-analysis update[J]. Am Heart J,2021,233:86-91.
HAN L,QU Q H,AYDIN D,et al. Structure and mechanism of the SGLT family of glucose transporters[J]. Nature,2022,601(7892):274-279.
ZHAO T,YANG S B,CHEN G H,et al. Dietary glucose increases glucose absorption and lipid deposition via SGLT1/2 signaling and acetylated ChREBP in the intestine and isolated intestinal epithelial cells of yellow catfish[J]. J Nutr,2020,150(7):1790-1798.
MILLER E M. Elements for success in managing type 2 diabetes with SGLT-2 inhibitors:overview of the efficacy and safety of SGLT-2 inhibitors in type 2 diabetes mellitus[J]. J Fam Pract,2017,66(Suppl. 2):S5-S12.
LU J M,FU L J,LI Y,et al. Henagliflozin monotherapy in patients with type 2 diabetes inadequately controlled on diet and exercise:a randomized,double-blind,placebo-controlled,phase 3 trial[J]. Diabetes Obes Metab,2021,23(5):1111-1120.
SZEKERES Z,TOTH K,SZABADOS E. The effects of SGLT2 inhibitors on lipid metabolism[J]. Metabolites,2021,11(2):87.
NEAL B,PERKOVIC V,MAHAFFEY K W,et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes[J]. N Engl J Med,2017,377(7):644-657.
HOEBEN E,WINTER W D,NEYENS M,et al. Population pharmacokinetic modeling of canagliflozin in healthy volunteers and patients with type 2 diabetes mellitus[J]. Clin Pharmacokinet,2016,55(2):209-223.
CALADO J,LOEFFLER J,SAKALLIOGLU O,et al. Familial renal glucosuria:SLC5A2 mutation analysis and evidence of salt-wasting[J]. Kidney Int,2006,69(5):852-855.
BONNER C,KERR-CONTE J,GMYR V,et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion[J]. Nat Med,2015,21(5):512-517.
ENIGK U,BREITFELD J,SCHLEINITZ D,et al. Role of genetic variation in the human sodium-glucose cotran-sporter 2 gene(SGLT2)in glucose homeostasis[J]. Pharmacogenomics,2011,12(8):1119-1126.
ORDELHEIDE A M,BÖHM A,KEMPE-TEUFEL D,et al. Common variation in the sodium/glucose cotransporter 2 gene SLC5A2 does neither affect fasting nor glucose-suppressed plasma glucagon concentrations[J]. PLoS One,2017,12(5):e0177148.
ZIMDAHL H,HAUPT A,BRENDEL M,et al. Influence of common polymorphisms in the SLC5A2 gene on metabolic traits in subjects at increased risk of diabetes and on response to empagliflozin treatment in patients with diabetes[J]. Pharmacogenet Genomics,2017,27(4):135-142.
HODGES L M,MARKOVA S M,CHINN L W,et al. Very important pharmacogene summary:ABCB1(MDR1,P-glycoprotein)[J]. Pharmacogenet Genomics,2011,21(3):152-161.
FANG X Y,MIAO R Y,WEI J H,et al. Advances in multi-omics study of biomarkers of glycolipid metabolism disorder[J]. Comput Struct Biotechnol J,2022,20:5935-5951.
HWANG J G,JEONG S I,KIM Y K,et al. Common ABCB1 SNP,C3435T could affect systemic exposure of dapagliflozin in healthy subject[J]. Transl Clin Pharmacol,2022,30(4):212-225.
OBERMEIER M,YAO M,KHANNA A,et al. In vitro characterization and pharmacokinetics of dapagliflozin(BMS-512148),a potent sodium-glucose cotransporter type Ⅱ inhibitor,in animals and humans[J]. Drug Metab Dispos,2010,38(3):405-414.
MUDERRISOGLU A,BABAOGLU E,KORKMAZ E T,et al. Effects of genetic polymorphisms of drug transporter ABCB1(MDR1)and cytochrome P450 enzymes CYP2A6,CYP2B6 on nicotine addiction and smoking cessation[J]. Front Genet,2020,11:571997.
ADAMS L A,ANSTEE Q M,TILG H,et al. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases[J]. Gut,2017,66(6):1138-1153.
SUMIDA Y,SEKO Y,YONEDA M,et al. Novel antidiabetic medications for non-alcoholic fatty liver disease with type 2 diabetes mellitus[J]. Hepatol Res,2017,47(4):266-280.
KAHL S,GANCHEVA S,STRAßBURGER K,et al. Empagliflozin effectively lowers liver fat content in well-controlled type 2 diabetes:a randomized,double-blind,phase 4,placebo-controlled trial[J]. Diabetes Care,2020,43(2):298-305.
MITSCHE M A,HOBBS H H,COHEN J C. Patatin-like phospholipase domain-containing protein 3 promotes transfer of essential fatty acids from triglycerides to pho-spholipids in hepatic lipid droplets[J]. J Biol Chem,2018,293(24):9232.
TAKEI D,ISHIHARA H,YAMAGUCHI S,et al. WFS1 protein modulates the free Ca2+ concentration in the endoplasmic reticulum[J]. FEBS Lett,2006,580(24):5635-5640.
Online Mendelian Inheritance in Man. Wolfram syndrome 1(WFS1):diabetes insipidus and diabetes mellitus with optic atrophy and deafness(DIDMOAD)[EB/OL]. [2024-01-20]. https://www.omim.org/entry/222300.%20Acces-sed%2023%20Aug%202017https://www.omim.org/entry/222300.%20Acces-sed%2023%20Aug%202017.
YAMADA T,ISHIHARA H,TAMURA A,et al. WFS1-deficiency increases endoplasmic reticulum stress,impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreatic beta-cells[J]. Hum Mol Genet,2006,15(10):1600-1609.
HU R,CHEN X Y,SU Q,et al. ISR inhibition reverses pancreatic β-cell failure in Wolfram syndrome models[J]. Cell Death Differ,2024,31(3):322-334.
NÁDASDI Á,GÁL V,MASSZI T,et al. Combined effect of pancreatic lipid content and gene variants(TCF7L2,WFS1 and 11BHSD1)on B-cell function in middle aged women in a post hoc analysis[J]. Diabetol Metab Syndr,2022,14(1):106.
ZHANG Y Q,HAN S,LIU C C,et al. THADA inhibition in mice protects against type 2 diabetes mellitus by improving pancreatic β-cell function and preserving β-cell mass[J]. Nat Commun,2023,14(1):1020.
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution