浏览全部资源
扫码关注微信
浙江海洋大学食品与药学学院,浙江 舟山 316022
Published:30 August 2024,
Received:06 January 2024,
Revised:19 May 2024,
扫 描 看 全 文
解佑银,汪鎔金,邵丽林等.C-藻蓝蛋白纳米微球的制备及体外抗脂多糖联合海水诱导急性肺损伤的作用机制研究 Δ[J].中国药房,2024,35(16):1964-1971.
XIE Youyin,WANG Rongjin,SHAO Lilin,et al.Preparation of C-phycocyanin nanospheres and the in vitro effect mechanism on acute lung injury induced by lipopolysaccharide combined with seawater[J].ZHONGGUO YAOFANG,2024,35(16):1964-1971.
解佑银,汪鎔金,邵丽林等.C-藻蓝蛋白纳米微球的制备及体外抗脂多糖联合海水诱导急性肺损伤的作用机制研究 Δ[J].中国药房,2024,35(16):1964-1971. DOI: 10.6039/j.issn.1001-0408.2024.16.05.
XIE Youyin,WANG Rongjin,SHAO Lilin,et al.Preparation of C-phycocyanin nanospheres and the in vitro effect mechanism on acute lung injury induced by lipopolysaccharide combined with seawater[J].ZHONGGUO YAOFANG,2024,35(16):1964-1971. DOI: 10.6039/j.issn.1001-0408.2024.16.05.
目的
2
制备C-藻蓝蛋白纳米微球(CPC-NPs)并评价其对脂多糖(LPS)联合海水诱导急性肺损伤的体外作用机制。
方法
2
采用离子交联法,以CPC为药物、羧甲基壳聚糖(CMCS)为载体、CaCl
2
为交联剂制备CPC-NPs,对CPC-NPs进行基础表征。小鼠肺泡Ⅱ型上皮细胞MLE-12和巨噬细胞RAW264.7均分为7组:正常组(Con组),模型组(Mod组),空白NPs组,CPC-NPs 30、60、120、240 μg/mL组。除Con组外其余各组均采用10 μg/mL LPS和25%海水联合处理6 h,造模后各给药组加相应剂量药物处理24 h。检测MLE-12细胞中丙二醛(MDA)、总抗氧化能力(T-AOC)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)水平,B细胞淋巴瘤2(Bcl-2)、Bcl-2关联X蛋白(Bax)、胱天蛋白酶-3(caspase-3)蛋白和mRNA,以及CAT、谷胱甘肽S-转移酶(GST)mRNA表达水平;检测RAW264.7细胞中白细胞介素1β(IL-1β)、肿瘤坏死因子α(TNF-α)、IL-6水平,NOD样受体热蛋白结构域相关蛋白3(NLRP3)、剪切的caspase 1(cleaved-caspase-1)蛋白及IL-1β、TNF-α、IL-6、诱导型一氧化氮合酶(iNOS)mRNA表达水平。
结果
2
制备的CPC-NPs粒径为(675.69±64.58)nm,Zeta电位为(-20.11±0.98)mV,多分散系数为0.455±0.010(
n
=3);包封率为35.60%,载药量为16.13%;形态为规则的球形;其中药物可持续释放30h以上。与Mod组比较,CPC-NPs各浓度组MLE-12细胞中T-AOC、SOD、CAT(除CPC-NPs 30 μg/mL组外)、GSH-Px水平和CAT、GST mRNA表达水平以及Bcl-2/Bax蛋白比值和mRNA比值均显著升高,MDA水平和caspase-3蛋白及mRNA表达水平均显著降低(
P
<0.01
或
P
<0.05)。与Mod组比较,CPC-NPs各浓度组RAW264.7细胞中IL-1β、TNF-α、IL-6水平和NLRP3、cleaved-caspase-1蛋白表达水平以及IL-1β、TNF-α、IL-6、iNOS mRNA表达水平均显著降低(
P
<0.01或
P
<0.05)。
结论
2
成功制备了具有肺靶向性和缓释性的CPC-NPs。CPC-NPs可以通过抗氧化应激及抑制细胞凋亡和炎症反应来缓解LPS联合海水诱导的急性肺损伤。
OBJECTIVE
2
To prepare C-phycocyanin nanoparticles (CPC-NPs) and evaluate the
in vitro
mechanism of CPC-NPs on acute lung injury induced by lipopolysaccharide (LPS) combined with seawater.
METHODS
2
Ion crosslinking method was used to prepare CPC-NPs using CPC as the drug, carboxymethyl chitosan (CMCS) as the carrier, and CaCl
2
as the crosslinking agent. The basic characterization of CPC-NPs was carried out. Mouse alveolar type Ⅱ epithelial cells MLE-12 and macrophages RAW264.7 were divided into 7 groups: normal group (Con group), model group (Mod group), blank NPs group, CPC-NPs 30, 60, 120 and 240 μg/mL groups. Except for the Con group, all other groups were treated with a combination of 10 μg/mL LPS and 25% seawater for 6 hours. After modeling, each treatment group was treated with corresponding drugs for 24 hours. The levels of malondialdehyde (MDA), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) in MLE-12 cells, as well as the expression levels of B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), caspase-3 protein and mRNA, CAT and glutathione S-transferase (GST) mRNA were determined. The levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 in RAW264.7 cells, as well as the expression levels of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), cleaved caspase-1 protein, and mRNA expressions of IL-1β, TNF-α, IL-6 and inducible nitric oxide synthase (iNOS) were all detected.
RESULTS
2
The prepared CPC-NPs had particle
size of (675.69±64.58) nm, Zeta potential of (-20.11±0.98) mV, polydispersity coefficient of 0.455±0.010 (
n
=3); entrapment efficiency of 35.60%, and drug loading of 16.13%;CPC-NPs had regular spherical shapes, where the drug could be sustainably released for more than 30 hours. Compared with Mod group, the levels of T-AOC, SOD, CAT (excluding the 30 μg/mL group of CPC-NPs) and GSH-Px, mRNA expressions of CAT and GST, as well as the Bcl-2/Bax protein ratio and mRNA ratio were significantly increased in MLE-12 cells of different concentration groups of CPC-NPs, while MDA levels and caspase-3 protein and mRNA expression were significantly reduced (
P
<0.01 or
P
<0.05). Compared with Mod group, the levels of IL-1β, TNF-α and IL-6, NLRP3 and cleaved-caspase-1 protein expressions, as well as the mRNA expressions of IL-1β, TNF-α, IL-6 and iNOS in RAW264.7 cells of different concentration groups of CPC-NPs were significantly reduced (
P
<0.01 or
P
<0.05).
CONCLUSIONS
2
CPC-NPs with lung targeting and sustained release property were prepared successfully, which can alleviate acute lung injury induced by LPS combined with seawater through antioxidant stress, inhibiting cell apoptosis and inflammatory response.
C-藻蓝蛋白纳米微球急性肺损伤氧化应激凋亡炎症反应海水脂多糖
nanospheresacute lung injuryoxidative stressapoptosisinflammatory responseseawaterlipopolysaccharide
LI P C,WANG B R,LI C C,et al. Seawater inhalation induces acute lung injury via ROS generation and the endoplasmic reticulum stress pathway[J]. Int J Mol Med,2018,41(5):2505-2516.
孔凯文,孟岩,邓小明. 海水淹溺性肺损伤机制的研究进展[J]. 海军军医大学学报,2023,44(3):349-355.
KONG K W,MENG Y,DENG X M. Mechanism of seawater drowning-induced lung injury:research progress[J]. Acad J Nav Med Univ,2023,44(3):349-355.
ROBERT A,DANIN P É,QUINTARD H,et al. Seawater drowning-associated pneumonia:a 10-year descriptive cohort in intensive care unit[J]. Ann Intensive Care,2017,7(1):45.
SATO K,KADIISKA M B,GHIO A J,et al. In vivo lipid-derived free radical formation by NADPH oxidase in acute lung injury induced by lipopolysaccharide:a model for ARDS[J]. FASEB J,2002,16(13):1713-1720.
ZHANG L F,KONG D Y,HUANG J X,et al. The Therapeutic effect and the possible mechanism of C-phycocyanin in lipopolysaccharide and seawater-induced acute lung injury[J]. Drug Des Devel Ther,2022,16:1025-1040.
YUAN B,LI Z X,SHAN H H,et al. A review of recent strategies to improve the physical stability of phycocyanin[J]. Curr Res Food Sci,2022,5:2329-2337.
刘昊泽,张善林,马微,等.螺旋藻藻蓝蛋白对乙醇致氧化应激小鼠抗氧化能力的影响[J].中国生物制品学杂志,2023,36(11):1301-1305.
LIU H Z,ZHANG S L,MA W,et al. Effects of Spirulina phycocyanin on antioxidant capacity of ethanol-induced oxidative stress mice[J]. Chin J Biol,2023,36(11):1301-1305.
VANESSA B,NIKITA D M,PLACIDO R,et al. C-phycocyanin prevents acute myocardial infarction-induced oxidative stress,inflammation and cardiac damage[J]. Pharm Biol,2022,60(1):755-763.
HUANG C W,HUANG D X,HUANG D S,et al. C-phycocyanin suppresses cell proliferation and promotes apoptosis by regulating the AMPK pathway in NCL-H292 non-small cell lung cancer cells[J]. Folia Biol,2022,68(1):16-24.
李新月,赵猛,丁子康,等. 藻蓝蛋白对环磷酰胺致小鼠肝肾损伤的保护作用[J]. 食品工业科技,2023,44(10):379-386.
LI X Y,ZHAO M,DING Z K,et al. Protective effect of phycocyanin on cyclophosphamide-induced immunocompromised mice[J]. Sci Technol Food Ind,2023,44(10):379-386.
ANITHA A,SREERANGANATHAN M,CHENNAZHI K P,et al. In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharma-cokinetic studies[J]. Eur J Pharm Biopharm,2014,88(1):238-251.
袁廷勋,何欣雨,王佳齐,等. 抗结核抗菌肽及其纳米药物递送系统的研究进展[J]. 中国人兽共患病学报,2023,39(8):805-813.
YUAN T X,HE X Y,WANG J Q,et al. Research pro-gress in anti-tuberculosis antimicrobial peptides and their nano drug delivery systems[J]. Chin J Zoonoses,2023,39(8):805-813.
姜良乾. 藻蓝蛋白及靶向纳米微球C-PC/CMC-CD59sp的抗乳腺癌分子机制研究[D]. 青岛:青岛大学,2019.
JIANG L Q. Molecular mechanism of anti-breast cancer activity of phycocyanin and targeting nano-drug C-PC/CMC-CD59sp[D].Qingdao:Qingdao University,2019.
LIU G X,XU X H,JIANG L Q,et al. Targeted antitumor mechanism of C-PC/CMC-CD55sp nanospheres in HeLa cervical cancer cells[J]. Front Pharmacol,2020,11:906.
刘慧慧. CPC/CMC-CD55sp纳米微球对Caski细胞体外抑增殖和促凋亡作用研究[D]. 青岛:青岛大学,2019.
LIU H H. CPC/CMC-CD55sp nanoparticles inhibit prolife-ration and apoptosis of Caski cells in vitro[D].Qingdao:Qingdao University,2019.
孔德一. 藻蓝蛋白对脂多糖并海水吸入性肺损伤的保护作用及其机制研究[D]. 舟山:浙江海洋大学,2022.
KONG D Y. The protective effect and mechanism of phycocyanin in lipopolysaccharide and seawater inhalation-induced lung injury[D].Zhoushan:Zhejiang Ocean University,2022.
陈敏,金发光. 海水吸入型急性肺损伤发病机制的研究进展[J]. 山西医科大学学报,2022,53(8):1041-1043.
CHEN M,JIN F G. Research progress on the pathogenesis of acute lung injury induced by seawater inhalation[J]. J Shanxi Med Univ,2022,53(8):1041-1043.
张鸿宇,金银秀,朱玥,等. 肺靶向抗肿瘤药物新剂型研究进展[J]. 广州化工,2022,50(9):23-24.
ZHANG H Y,JIN Y X,ZHU Y,et al. Research progress on new dosage forms of lung targeted antitumor drugs[J]. Guangzhou Chem Ind,2022,50(9):23-24.
QIU Y B,WAN B B,LIU G,et al. Nrf2 protects against seawater drowning-induced acute lung injury via inhibi-ting ferroptosis[J]. Respir Res,2020,21(1):232.
ZHANG Q Q,FENG A,ZENG M N,et al. Chrysosplenol D protects mice against LPS-induced acute lung injury by inhibiting oxidative stress,inflammation,and apoptosis via TLR4-MAPKs/NF-κB signaling pathways[J]. Innate Immun,2021,27(7/8):514-524.
李冰. 钝顶螺旋藻/节旋藻藻蓝蛋白的提取纯化及抗肿瘤免疫效应研究[D]. 青岛:中国海洋大学,2006.
LI B. Research on the extraction,purification and antitumor immune activity of phycocyanin from spirulina platensis/arthrospira platensis[D].Qingdao:Ocean University of China,2006.
张敏,李思聪,王斌,等. 川射干提取物调节TLR4/NF-κB信号通路缓解LPS诱导的小鼠急性肺损伤的研究[J]. 黑龙江畜牧兽医,2023(23):103-109.
ZHANG M,LI S C,WANG B,et al. Modulation of TLR4/NF-κB signaling pathway by Iridis Tectori Rhizoma extract alleviates LPS-induced acute lung injury in mice[J]. Heilongjiang Anim Sci Vet Med,2023(23):103-109.
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution