浏览全部资源
扫码关注微信
陆军军医大学第一附属医院江北院区(陆军第九五八医院)药剂科,重庆 400020
Published:15 November 2024,
Received:06 June 2024,
Revised:16 September 2024,
移动端阅览
熊瑞,张世鹏,刘恒旭等.金银花黄酮脂质体膜的制备及其抗MRSA的机制研究 Δ[J].中国药房,2024,35(21):2616-2621.
XIONG Rui,ZHANG Shipeng,LIU Hengxu,et al.Preparation of Lonicerae japonicae flavonoids liposome membrane and its antibacterial mechanism against methicillin-resistant Staphylococcus aureus[J].ZHONGGUO YAOFANG,2024,35(21):2616-2621.
熊瑞,张世鹏,刘恒旭等.金银花黄酮脂质体膜的制备及其抗MRSA的机制研究 Δ[J].中国药房,2024,35(21):2616-2621. DOI: 10.6039/j.issn.1001-0408.2024.21.07.
XIONG Rui,ZHANG Shipeng,LIU Hengxu,et al.Preparation of Lonicerae japonicae flavonoids liposome membrane and its antibacterial mechanism against methicillin-resistant Staphylococcus aureus[J].ZHONGGUO YAOFANG,2024,35(21):2616-2621. DOI: 10.6039/j.issn.1001-0408.2024.21.07.
目的
2
制备金银花黄酮脂质体膜(LFLM),并研究其抗耐甲氧西林金黄色葡萄球菌(MRSA)的作用机制。
方法
2
以大豆磷脂、胆固醇为载体,利用乙醇注入法制备金银花黄酮脂质体,然后将其负载于壳聚糖和聚乙烯醇的混合膜材中制得LFLM。测定金银花黄酮脂质体粒径、多分散性指数(PDI)和LFLM的释放率。设置对照组、LFLM低浓度组(2.5 mg/mL)、LFLM中浓度组(5 mg/mL)、LFLM高浓度组(10 mg/mL)、阳性组(10 μg/mL万古霉素)和联合用药组(10 mg/mL LFLM+10 μg/mL 万古霉素),评价LFLM对MRSA菌落形成、存活、生物膜形成的影响;检测MRSA上清液中K
+
、Mg
2+
、乳酸脱氢酶(LDH)、碱性磷酸酶(AKP)的含量;检测MRSA中
mecA
、
mecR1
mRNA的表达水平。
结果
2
金银花黄酮脂质体的粒径为(80.91±3.96)nm,PDI为0.26±0.07;LFLM在12 h内的释放率为55%,36 h内的释放率为73%。与对照组比较,LFLM中、高浓度组和阳性组MRSA的菌落形成数均显著减少(
P
<0.05),死菌与活菌之比、生物膜抑制率以及上清液中K
+
、Mg
2+
、LDH、AKP含量均显著升高(
P
<0.05),
mecA
、
mecR1
mRNA表达水平均显著降低(
P
<0.05)。LFLM与万古霉素联用后,抗MRSA作用进一步加强。
结论
2
本研究成功制得LFLM,其具有良好的释药性,可通过促进MRSA细胞壁和细胞膜破坏,抑制
mecA
、
mecR1
mR
NA表达,从而发挥抗菌作用。
OBJECTIVE
2
To prepare
Lonicerae japonicae
flavonoids liposome membrane (LFLM), and to study the mechanism of its anti-methicillin-resistant
Staphylococcus aureus
(MRSA).
METHODS
2
L. japonicae
flavonoids liposome (LFL) were prepared by ethanol injection with phospholipids and cholesterol as carriers. LFLM was prepared by loading LFL in mixed membranes of chitosan and polyvinyl alcohol. The particle size of LFL, polydispersity index (PDI) and release rate of LFLM were measured. A control group, LFLM low-concentration group (2.5 mg/mL), LFLM-medium concentration group (5 mg/mL), LFLM high-concentration group (10 mg/mL), positive group (10 μg/mL vancomycin), and combination therapy group (10 mg/mL LFLM and 10 μg/mL vancomycin) were set up. The effects of LFLM on MRSA colony formation and survival as well as the formation of MRSA biofilm were evaluated. The contents of K
+
, Mg
2+
, lactic dehydrogenase (LDH), and alkaline phosphatase (AKP) in the supernatant of MRSA were determined. mRNA expressions of
mecA
and
mecR1
in MRSA were determined.
RESULTS
2
The particle size of LFL was (80.91±3.96) nm, and the PDI was 0.26±0.07. The release rate of LFLM was 55% within 12 h and 73% within 36 h. Compared with the control group, the number of MRSA colony formation decreased significantly in LFLM medium-concentration and high-concentration groups, and the positive group (
P
<0.05). The ratio of dead to live bacteria, biofilm inhibition rate, and the contents of K
+
, Mg
2+
, LDH and AKP were increased significantly (
P
<0.05), while the mRNA expressions of
mecA
and
mecR1
were decreased significantly (
P
<0.05). The combination of LFLM and vancomycin further enha
nced the anti-MRSA effect.
CONCLUSIONS
2
LFLM is prepared successfully in the study and has good drug release characteristics. LFLM can exert anti-MRSA activity by promoting cell wall and membrane damage, and suppressing the mRNA expression of
mecA
and
mecR1
.
金银花黄酮脂质体膜剂耐甲氧西林金黄色葡萄球菌抗菌
liposomesmembraneStaphylococcus aureusantibacterial
MAHJABEEN F,SAHA U,MOSTAFA M N,et al. An update on treatment options for methicillin-resistant Staphylococcus aureus (MRSA) bacteremia:a systematic review[J]. Cureus,2022,14(11):e31486.
TURNER N A,SHARMA-KUINKEL B K,MASKARINEC S A,et al. Methicillin-resistant Staphylococcus aureus:an overview of basic and clinical research[J]. Nat Rev Microbiol,2019,17(4):203-218.
HSIEH R C,LIU R,BURGIN D J,et al. Understanding mechanisms of virulence in MRSA:implications for antivirulence treatment strategies[J]. Expert Rev Anti Infect Ther,2023,21(9):911-928.
韦晶玥,罗诗雯,冯龄燃,等. 金银花与山银花活性成分抗炎作用及机制研究进展[J]. 中国实验方剂学杂志,2024,30(11):273-281.
WEI J Y,LUO S W,FENG L R,et al. Anti-inflammatory effect and mechanism of active constituents from Lonicerae Japonicae Flos and Lonicerae Flos:a review[J]. Chin J Exp Tradit Med Formulae,2024,30(11):273-281.
CAO Y X,JI P,WU F L,et al. Lonicerae japonicae Caulis:a review of its research progress of active metabolites and pharmacological effects[J]. Front Pharmacol,2023,14:1277283.
LI Y K,LI W,FU C M,et al. Lonicerae Japonicae Flos and Lonicerae Flos:a systematic review of ethnopharmacology,phytochemistry and pharmacology[J]. Phytochem Rev,2020,19(1):1-61.
GUIMARÃES D,CAVACO-PAULO A,NOGUEIRA E. Design of liposomes as drug delivery system for therapeutic applications[J]. Int J Pharm,2021,601:120571.
程玉钏,郝旭亮,付丽娜,等. 基于白及多糖的黄藤素纳米柔性脂质体膜剂的制备研究[J]. 中草药,2018,49(11):2551-2556.
CHENG Y C,HAO X L,FU L N,et al. Preparation of palmatine-loaded flexible nano-liposomes films based on Bletilla striata polysaccharides[J]. Chin Tradit Herb Drugs,2018,49(11):2551-2556.
李微微,程岚,于炜婷,等. 壳聚糖-聚乙烯醇复合凝胶基质抑菌性能的研究[J]. 中国新药杂志,2012,21(12):1407-1409.
LI W W,CHENG L,YU W T,et al. Bacteriostatic effect of chitosan-polyving alcohol gel matrix[J]. Chin J New Drugs,2012,21(12):1407-1409.
王兴芝,代英辉,王东凯. 脂质体的制备方法及应用的研究进展[J]. 中国药剂学杂志,2024,22(1):14-24.
WANG X Z,DAI Y H,WANG D K. Research progress in preparation methods and applications of liposomes[J]. Chin J Pharm Online Ed,2024,22(1):14-24.
WANG X W,CHENG F Y,WANG X J,et al. Chitosan decoration improves the rapid and long-term antibacterial activities of cinnamaldehyde-loaded liposomes[J]. Int J Biol Macromol,2021,168:59-66.
HASSOUN A,LINDEN P K,FRIEDMAN B. Incidence,prevalence,and management of MRSA bacteremia across patient populations:a review of recent developments in MRSA management and treatment[J]. Crit Care,2017,21(1):211.
BAO M,ZHANG L L,LIU B,et al. Synergistic effects of anti-MRSA herbal extracts combined with antibiotics[J]. Future Microbiol,2020,15:1265-1276.
WANG X Y,WEI L,WANG L,et al. Scutellarin poten- tiates vancomycin against lethal pneumonia caused by methicillin-resistant Staphylococcus aureus through dual inhibition of sortase A and caseinolytic peptidase P[J]. Biochem Pharmacol,2022,199:114982.
KONG X R,WANG B M,CHEN X Y,et al. Hinokiflavone attenuates the virulence of methicillin-resistant Staphylococcus aureus by targeting caseinolytic protease P[J]. Antimicrob Agents Chemother,2022,66(8):e0024022.
ROY R,TIWARI M,DONELLI G,et al. Strategies for combating bacterial biofilms:a focus on anti-biofilm agents and their mechanisms of action[J]. Virulence,2018,9(1):522-554.
NGUYEN T L A,BHATTACHARYA D. Antimicrobial activity of quercetin:an approach to its mechanistic principle[J]. Molecules,2022,27(8):2494.
刘欣元,盛德乔. 金银花有效成分的抗菌作用机制研究进展[J]. 抗感染药学,2023,20(8):783-789.
LIU X Y,SHENG D Q. Research progress in the antibacterial effect of active ingredients of Lonicerae Japonicae Flos[J]. Anti Infect Pharm,2023,20(8):783-789.
邓裕祺,蔡燕. 耐甲氧西林金黄色葡萄球菌的耐药机制[J]. 甘肃医药,2022,41(5):392-396.
DENG Y Q,CAI Y. Resistance mechanism of methicillin-resistant Staphylococcus aureus[J]. Gansu Med J,2022,41(5):392-396.
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution