浏览全部资源
扫码关注微信
1.安庆市立医院药事管理科,安徽 安庆 246000
2.安庆市立医院普外科,安徽 安庆 246000
3.安庆市立医院肿瘤内科,安徽 安庆 246000
Published:30 November 2024,
Received:25 March 2024,
Revised:17 July 2024,
移动端阅览
黄灿,王栓,马军等.阿帕替尼致恶性肿瘤患者蛋白尿影响因素及风险预测模型研究 Δ[J].中国药房,2024,35(22):2779-2783.
HUANG Can,WANG Shuan,MA jun,et al.Study on the influencing factors and risk prediction model for proteinuria in patients with malignant tumors induced by apatinib[J].ZHONGGUO YAOFANG,2024,35(22):2779-2783.
黄灿,王栓,马军等.阿帕替尼致恶性肿瘤患者蛋白尿影响因素及风险预测模型研究 Δ[J].中国药房,2024,35(22):2779-2783. DOI: 10.6039/j.issn.1001-0408.2024.22.13.
HUANG Can,WANG Shuan,MA jun,et al.Study on the influencing factors and risk prediction model for proteinuria in patients with malignant tumors induced by apatinib[J].ZHONGGUO YAOFANG,2024,35(22):2779-2783. DOI: 10.6039/j.issn.1001-0408.2024.22.13.
目的
2
研究恶性肿瘤患者使用阿帕替尼治疗后发生蛋白尿的影响因素,据此构建并评价其风险预测模型。
方法
2
选取我院2020年1月-2022年12月使用阿帕替尼治疗的恶性肿瘤患者120例作为训练集,回顾性收集其临床资料,采用单因素分析和多因素Logistic回归分析确定阿帕替尼致蛋白尿的独立危险因素,并构建风险预测模型;采用受试者操作特征(ROC)曲线对其预测价值进行评价。选取2023年1-12月我院使用阿帕替尼治疗的恶性肿瘤患者34例作为验证集,利用其临床资料交叉验证预测模型的准确性。
结果
2
120例训练集患者的蛋白尿发生率为26.67%。蛋白尿组有吸烟史、合并高血压、阿帕替尼日剂量≥500 mg的患者比例,以及丙氨酸转氨酶水平均显著高于非蛋白尿组,而中性粒细胞计数显著低于非蛋白尿组(
P
<0.05)。其中,有吸烟史、合并高血压是阿帕替尼致蛋白尿的独立危险因素(比值比分别为5.005、5.342,95%置信区间分别为1.806~13.872、1.227~9.602,
P
<0.05)。阿帕替尼致蛋白尿发生概率(
P
)的二元Logistic回归模型方程为Logit
P
=1.610
X
MH
+1.233
X
SH
-1.483(MH为合并高血压,SH为有吸烟史),模型准确度为80.0%。ROC曲线分析结果显示,曲线下面积为0.771,最大约登指数为0.474,此时Logit
P
的最佳截断值为0.159 9,模型的敏感度为90.6%、特异性为56.8%。交叉验证结果显示,34例患者总体预测准确率为88.24%。
结论
2
有吸烟史和合并高血压是阿帕替尼致蛋白尿的独立危险因素;所建风险预测模型具有中等预测价值,可用于预测阿帕替尼致恶性肿瘤患者蛋白尿的发生风险。
OBJECTIVE
2
To study the influencing factors for proteinuria in patients with malignant tumors treated with apatinib, then establish and evaluate a risk prediction model based on it.
METHODS
2
A total of 120 patients with malignant tumors treated with apatinib in our hospital from January 2020 to December 2022 were selected as the training set, and the clinical data was collected. Univariate analysis and multivariate Logistic regression analysis were used to identify independent risk factors for proteinuria associated with apatinib and then construct a risk prediction model. The predictive value of the model was evaluated by using the receiver operator characteristic (ROC) curve. A total of 34 patients with malignant tumors treated with apatinib from January to December 2023 in our hospital were selected as the validation set, and their clinical data were obtained to cross-validate the accuracy of the prediction model.
RESULTS
2
The incidence of proteinuria in the training set of 120 patients was 26.67%. The proportions of patients with smoking history, combined hypertension, apatinib daily dose of ≥500 mg, and alanine amino
transferase level were significantly higher in proteinuria group than those in non-proteinuria group. At the same time, the neutrophilic granulocyte count was significantly lower than that in non-proteinuria group (
P
<0.05). Patients with smoking history and combined hypertension were the independent risk factors for apatinib-induced proteinuria (odds ratios were 5.005 and 5.342, respectively; with 95% confidence intervals of 1.806-13.872 and 1.227-9.602, respectively;
P
<0.05). The binary Logistic regression model equation for the probability (
P
) of apatinib-induced proteinuria is expressed as Logit
P
=1.610
X
MH
+1.233
X
SH
-1.483 (MH for combined hypertension, SH for the smoking history), with a model accuracy of 80.0%. ROC curve analysis demonstrated the area under the ROC curve of 0.771, the maximum Youden’s index of 0.474, and the optimal cut-off value for Logit
P
was 0.159 9, with a sensitivity of 90.6% and specificity of 56.8%. Cross-validation results indicated an overall prediction accuracy of 88.24% for the 34 patients.
CONCLUSIONS
2
Combined hypertension and smoking history are independent risk factors for apatinib-induced proteinuria. The constructed risk prediction model has moderate predictive value and can be used to predict the risk of proteinuria in patients with malignant tumors induced by apatinib.
阿帕替尼恶性肿瘤蛋白尿危险因素风险预测模型Logistic回归受试者操作特征曲线
malignant tumorsproteinuriarisk factorsrisk prediction modelLogistic regressionROC curve
HAMERLIK P,LATHIA J D,RASMUSSEN R,et al. Autocrine VEGF-VEGFR2-neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth[J]. J Exp Med,2012,209(3):507-520.
GUO Y S,TANG J H,HUANG X E,et al. Efficacy and toxicity of apatinib combined with or without chemotherapy for patients with advanced or metastatic chemotherapy-refractory gastric adenocarcinoma:a pro-spective clinical study[J]. Medicine,2019,98(6):e13908.
YU W C,ZHANG K Z,CHEN S G,et al. Efficacy and safety of apatinib in patients with intermediate/advanced hepatocellular carcinoma:a prospective observation study[J]. Medicine,2018,97(3):e9704.
HU X C,CAO J,HU W W,et al. Multicenter phase Ⅱ study of apatinib in non-triple-negative metastatic breast cancer[J]. BMC Cancer,2014,14:820.
李萍,贾乐川,付岩,等. 甲磺酸阿帕替尼不良反应中文文献分析[J]. 中国医院药学杂志,2020,40(5):546-548.
LI P,JIA L C,FU Y,et al. Literature analysis of adverse drug reactions induced by apatinib[J]. Chin J Hosp Pharm,2020,40(5):546-548.
张文彤. SPSS统计分析基础教程[M]. 3版. 北京:高等教育出版社,2017:203-204.
ZHANG W T. Basic course of SPSS statistical analysis[M]. 3rd edition. Beijing:Higher Education Press,2017:203-204.
秦叔逵,李进. 阿帕替尼治疗胃癌的临床应用专家共识[J]. 临床肿瘤学杂志,2015,20(9):841-847.
QIN S K,LI J. Expert consensus on treatment of gastric cancer with apatinib[J]. Clin Clin Oncol,2015,20(9):841-847.
朱彩云,陈彦亮,刘敏,等. 阿帕替尼单药治疗晚期恶性肿瘤的疗效及不良反应分析[J]. 现代肿瘤医学,2021,29(20):3649-3653.
ZHU C Y,CHEN Y L,LIU M,et al. Efficacy and safety of apatinib monotherapy in patients with advanced malignancies[J]. J Mod Oncol,2021,29(20):3649-3653.
BIANCHI S,BIGAZZI R,CAMPESE V M. Microalbuminuria in essential hypertension:significance,pathophysiology,and therapeutic implications[J]. Am J Kidney Dis,1999,34(6):973-995.
高血压肾病诊治中国专家共识组成员. 高血压肾病诊断和治疗中国专家共识:2022[J]. 中华高血压杂志,2022,30(4):307-317.
The Member of Chinese Expert Consensus on the Diagnosis and Treatment of Hypertensive Nephropathy. Chinese expert consensus on the diagnosis and treatment of hypertensive nephropathy:2022 [J]. Chin J Hypertens,2022,30(4):307-317.
岳晓冬,沈金华,黄爱民,等. 50~60岁社区人群白蛋白尿发生率及其影响因素调查研究[J]. 中国全科医学,2020,23(23):2987-2990.
YUE X D,SHEN J H,HUANG A M,et al. Prevalence and influencing factors of albuminuria among 50-60-year-old community-dwelling adults[J]. Chin Gen Pract,2020,23(23):2987-2990.
孙治平,武晓春,戴瑛,等. 尿微量白蛋白/肌酐在老年健康体检人群慢性肾脏病筛查中的应用[J]. 实用老年医学,2021,35(3):278-281.
SUN Z P,WU X C,DAI Y,et al. Application of urine microalbumin/creatinine in screening chronic kidney disease in the elderly[J]. Pract Geriatr,2021,35(3):278-281.
XIA J,WANG L,MA Z H,et al. Cigarette smoking and chronic kidney disease in the general population:a syste-matic review and meta-analysis of prospective cohort studies[J]. Nephrol Dial Transplant,2017,32(3):475-487.
HE Y M,CHEN W L,KAO T W,et al. Relationship between ideal cardiovascular health and incident proteinuria:a 5 year retrospective cohort study[J]. Nutrients,2022,14(19):4040.
ITO K,MAEDA T,TADA K,et al. The role of cigarette smoking on new-onset of chronic kidney disease in a Japanese population without prior chronic kidney disease:Iki epidemiological study of atherosclerosis and chronic kidney disease(ISSA-CKD)[J]. Clin Exp Nephrol,2020,24(10):919-926.
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution