浏览全部资源
扫码关注微信
1.山东省药学科学院,济南 250101
2.山东省人工噬菌体药物技术创新中心,济南 250101
3.鲁南制药集团股份有限公司,山东 临沂 276000
4.山东中医药大学中医药创新研究院,济南 250001
Published:15 December 2024,
Received:17 April 2024,
Revised:19 November 2024,
移动端阅览
孙淑萌,林琳,张岱州等.基于液相色谱分离技术的核酸类药物生物分析方法研究进展 Δ[J].中国药房,2024,35(23):2959-2964.
SUN Shumeng,LIN Lin,ZHANG Daizhou,et al.Liquid chromatography-based bioanalytical technologies for nucleic acid drugs[J].ZHONGGUO YAOFANG,2024,35(23):2959-2964.
孙淑萌,林琳,张岱州等.基于液相色谱分离技术的核酸类药物生物分析方法研究进展 Δ[J].中国药房,2024,35(23):2959-2964. DOI: 10.6039/j.issn.1001-0408.2024.23.20.
SUN Shumeng,LIN Lin,ZHANG Daizhou,et al.Liquid chromatography-based bioanalytical technologies for nucleic acid drugs[J].ZHONGGUO YAOFANG,2024,35(23):2959-2964. DOI: 10.6039/j.issn.1001-0408.2024.23.20.
核酸类药物的生物分析方法主要有基于配体结合分析、基于聚合酶链反应和基于液相色谱分离技术3大类,前两者灵敏度虽高,但选择性较差,很难区分寡核苷酸本身及其较短的代谢产物。基于液相色谱分离技术生物分析方法的灵敏度虽略有逊色,但由于其具有高选择性,能够区分寡核苷酸本身及其代谢产物,故在核酸类药物的临床前和临床研究中展现出了广阔的应用前景。本文综述了该类方法中的高效液相色谱-紫外检测(HPLC-UV)法、高效液相色谱-荧光(HPLC-FL)法、液相色谱-串联质谱(LC-MS/MS)法、液相色谱-高分辨质谱法、微流液相色谱-串联质谱(microflow LC-MS/MS)法、杂交液相色谱-串联质谱法的特点及其在核酸类药物分析中的应用情况,发现除HPLC-UV法的检测灵敏度较低以外,其余方法均具有较高的灵敏度,但尚存在一些不足,如HPLC-FL法需要设计合适的探针、LC-MS/MS法需要标准物质、microflow LC-MS/MS法成本较高等。另外,一些相关策略及技术(如非特异性吸附解决策略、样品前处理技术等)的发展,在提高方法灵敏度的同时,也进一步加速了基于液相色谱分离技术的核酸类药物生物分析方法的发展。
There are three types of bioanalytical methods for nucleic acid drugs, including ligand binding assay, quantitative polymerase chain reaction and liquid chromatography-based bioanalytical technologies. Although the first two assays have high sensitivity, they have poor selectivity and can not differentiate between intact and truncated metabolites. Liquid chromatography-based bioanalytical technologies which are less sensitive, offer high selectivity for the identification of intact and truncated metabolites. They have broad application prospects in both preclinical and clinical investigations of therapeutic nucleic acid drugs. This paper provides a critical review on the characteristics of these technologies and their application to analyze nucleic acid drugs, including high performance liquid chromatography-ultraviolet detection (HPLC-UV), high performance liquid chromatography-fluorescence (HPLC-FL), liquid chromatography-tandem mass spectrometry (LC-MS/MS), liquid chromatography-high resolution-mass spectrometry, microflow liquid chromatography-tandem mass spectrometry (microflow LC-MS/MS) and hybridization liquid chromatography-tandem mass spectrometry. Although these technologies have high sensitivity except for HPLC-UV, they still have some shortcomings, such as suitable probes need to be designed for HPLC-FL, standard substance for LC-MS/MS, and high cost for microflow LC-MS/MS. In addition, the development of some related strategies or technologies (e.g. non-specific adsorption strategy, sample pretreatment) which can improve the sensitivity, has hastened the development of liquid chromatography-based bioanalytical technologies for nucleic acid drugs.
核酸类药物寡核苷酸生物分析液相色谱分离技术
oligonucleotidebioanalysisliquid chromatographyseparation technology
MOUMNÉ L,MARIE A C,CROUVEZIER N. Oligonucleotide therapeutics:from discovery and development to patentability[J]. Pharmaceutics,2022,14(2):260.
YU A M,CHOI Y H,TU M J. RNA drugs and RNA targets for small molecules:principles,progress,and challenges[J]. Pharmacol Rev,2020,72(4):862-898.
ROEHR B. Fomivirsen approved for CMV retinitis[J]. J Int Assoc Physicians AIDS Care,1998,4(10):14-16.
LARDEUX H,D’ATRI V,GUILLARME D. Recent advances and current challenges in hydrophilic interaction chromatography for the analysis of therapeutic oligonucleo- tides[J]. Trac Trends Anal Chem,2024,176:117758.
KOTAPATI S,DESHPANDE M,JASHNANI A,et al. The role of ligand-binding assay and LC-MS in the bioanalysis of complex protein and oligonucleotide therapeutics[J]. Bioanalysis,2021,13(11):931-954.
CASTELLANOS-RIZALDOS E,BROWN C R,DENNIN S,et al. RT-qPCR methods to support pharmacokinetics and drug mechanism of action to advance development of RNAi therapeutics[J]. Nucleic Acid Ther,2020,30(3):133-142.
程忠哲,姜宏梁. 核酸类药物生物分析方法研究进展[J]. 药学学报,2021,56(9):2335-2345.
CHENG Z Z,JIANG H L. Advances in the bioanalysis of therapeutic oligonucleotides[J]. Acta Pharm Sin,2021,56(9):2335-2345.
PEREZ C,RANI M,PHAN T. Optimization of high-performance liquid chromatography parameters for purification of oligonucleotide-A[J]. Am J Anal Chem,2022,13(2):39-50.
TAKANO T,AOYAMA C,TERASAKI Y,et al. Ion-pair reversed-phase liquid chromatographic separation of oligonucleotides[J]. Anal Sci,2021,37(12):1811-1814.
UMEMURA K,IWAKI T,KIMURA T,et al. Pharmacokinetics and safety of defibrotide in healthy Japanese subjects[J]. Clin Pharmacol Drug Dev,2016,5(6):548-551.
NUCKOWSKI Ł,KACZMARKIEWICZ A,STUDZIŃSKA S. Development of SPE method for the extraction of phosphorothioate oligonucleotides from serum samples[J]. Bioanalysis,2018,10(20):1667-1677.
JI Y H,GUO Z X,YAN M,et al. Metabolite identification and quantitation of RBD1016 siRNA:a direct comparison of hybridization-based LC-FD and LC-HRAM assays[J]. Bioanalysis,2024,16(2):91-105.
ZHANG X P,GOEL V,ROBBIE G J. Pharmacokinetics of patisiran,the first approved RNA interference therapy in patients with hereditary transthyretin-mediated amyloidosis[J]. J Clin Pharmacol,2020,60(5):573-585.
TIAN Q G,ROGNESS J,MENG M,et al. Quantitative determination of a siRNA (AD00370) in rat plasma using peptide nucleic acid probe and HPLC with fluorescence detection[J]. Bioanalysis,2017,9(11):861-872.
TRUBETSKOY V S,GRIFFIN J B,NICHOLAS A L, et al. Phosphorylation-specific status of RNAi triggers in pharmacokinetic and biodistribution analyses[J]. Nucleic Acids Res,2017,45(3):1469-1478.
JI Y H,LIU Y J,XIA W H,et al. Importance of probe design for bioanalysis of oligonucleotides using hybridization-based LC-fluorescence assays[J]. Bioanalysis,2019,11(21):1917-1925.
LIU A W,CHENG M,ZHOU Y X,et al. Bioanalysis of oligonucleotide by LC-MS:effects of ion pairing regents and recent advances in ion-pairing-free analytical strategies[J]. Int J Mol Sci,2022,23(24):15474.
EWLES M,GOODWIN L,SCHNEIDER A,et al. Quantification of oligonucleotides by LC-MS/MS:the challenges of quantifying a phosphorothioate oligonucleotide and multiple metabolites[J]. Bioanalysis,2014,6(4):447-464.
LEDVINA A R,EWLES M,SEVERIN P,et al. High-sensitivity workflow for LC-MS-based analysis of GalNAc-conjugated oligonucleotides:a case study[J]. Bioanalysis,2021,13(17):1343-1353.
HEMSLEY M,EWLES M,GOODWIN L. Development of a bioanalytical method for quantification of a 15-mer oligonucleotide at sub-ng/mL concentrations using LC-MS/MS[J]. Bioanalysis,2012,4(12):1457-1469.
GOYON A,FAN Y C,ZHANG K. Liquid chromatography:analysis of oligonucleotides by liquid chromatography[M]. Amsterdam:Elsevier,2023:357-380.
ZHANG X,SHA C J,ZHANG W,et al. Development and validation of an HILIC/MS/MS method for determination of nusinersen in rabbit plasma[J]. Heliyon,2024,10(10):e31213.
LI J,LIU J,ZHANG X M,et al. Nonclinical pharmacokinetics and absorption,distribution,metabolism,and excretion of givosiran,the first approved N-acetylgalactosa- mine-conjugated RNA interference therapeutic[J]. Drug Metab Dispos,2021,49(7):572-580.
LI J,LIU J,ENDERS J,et al. Discovery of a novel deaminated metabolite of a single-stranded oligonucleotide in vivo by mass spectrometry[J]. Bioanalysis,2019,11(21):1955-1965.
LIU A W,XIAO X,WANG J W,et al. Metabolite profi- ling of chemically modified oligonucleotides in rat liver homogenates using hydrophilic interaction liquid chroma- tography-high resolution mass spectrometry[J]. Microchem J,2024,202:110797.
SUN Y C,NITTA S I,SAITO K,et al. Development of a bioanalytical method for an antisense therapeutic using high-resolution mass spectrometry[J]. Bioanalysis,2020,12(24):1739-1756.
LI X Q,ELEBRING M,DAHLÉN A,et al. In vivo metabolite profiles of an N-acetylgalactosamine-conjugated antisense oligonucleotide AZD8233 using liquid chromatography high-resolution mass spectrometry:a cross-species comparison in animals and humans[J]. Drug Metab Dispos,2023,51(10):1350-1361.
KILANOWSKA A,NUCKOWSKI Ł,STUDZIŃSKA S. Studying in vitro metabolism of the first and second ge- neration of antisense oligonucleotides with the use of ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry[J]. Anal Bioanal Chem,2020,412(27):7453-7467.
NEEDHAM S R. Microspray and microflow liquid chromatography:the way forward for LC-MS bioanalysis[J]. Bioanalysis,2017,9(24):1935-1937.
JIANG D,YUAN L. Microflow LC-MS/MS to improve sensitivity for antisense oligonucleotides bioanalysis:critical role of sample cleanness[J]. Bioanalysis,2022,14(21):1365-1376.
GUIMARAES G J,LEACH F E,BARTLETT M G. Microflow liquid chromatography-multi-emitter nanoelectrospray mass spectrometry of oligonucleotides[J]. J Chromatogr A,2023,1696:463976.
DILLEN L,SIPS L,GREWAY T,et al. Quantitative analysis of imetelstat in plasma with LC-MS/MS using solid-phase or hybridization extraction[J]. Bioanalysis,2017,9(23):1859-1872.
LI P,GONG Y Q,KIM J,et al. Hybridization liquid chromatography-tandem mass spectrometry:an alternative bioanalytical method for antisense oligonucleotide quantitation in plasma and tissue samples[J]. Anal Chem,2020,92(15):10548-10559.
LI P,DUPUIS J F,VRIONIS V,et al. Validation and application of hybridization liquid chromatography-tandem mass spectrometry methods for quantitative bioanalysis of antisense oligonucleotides[J]. Bioanalysis,2022,14(9):589-601.
YUAN L,DUPUIS J F,MEKHSSIAN K. A novel hybri- dization LC-MS/MS methodology for quantification of siRNA in plasma,CSF and tissue samples[J]. Molecules,2023,28(4):1618.
NGUYEN J M,GILAR M,KOSHEL B,et al. Assessing the impact of nonspecific binding on oligonucleotide bioanalysis[J]. Bioanalysis,2021:13(16):1233-1244.
ZHANG G D,LIN J,SRINIVASAN K,et al. Strategies for bioanalysis of an oligonucleotide class macromolecule from rat plasma using liquid chromatography-tandem mass spectrometry[J]. Anal Chem,2007,79(9):3416-3424.
SUN Y C,NITTA S I,SAITO K,et al. Development and multicenter validation of an LC-MS-based bioanalytical method for antisense therapeutics[J]. Bioanalysis,2022,14(18):1213-1227.
SIMEONE J,PATEL A V,DELANO M,et al. Optimizing test approaches for the detection of exposed metal surfaces within a chromatographic flow path[J]. J Chromatogr A,2022,1666:462855.
EWLES M,LEDVINA A R,POWERS B,et al. Observations from a decade of oligonucleotide bioanalysis by LC-MS[J]. Bioanalysis,2024,16(12):615-629.
LIU R,LUO Q,LIU Z Q,et al. Optimizing sample preparation workflow for bioanalysis of oligonucleotides through liquid chromatography tandem mass spectrometry[J]. J Chromatogr A,2020,1629:461473.
STUDZIŃSKA S,ŁOBODZIŃSKI F,BUSZEWSKI B. Application of hydrophilic interaction liquid chromatography coupled with mass spectrometry in the analysis of phospho- rothioate oligonucleotides in serum[J]. J Chromatogr B Analyt Technol Biomed Life Sci,2017,1040:282-288.
KACZMARKIEWICZ A,NUCKOWSKI Ł,STUDZIŃSKA S. Analysis of the first and second generation of antisense oligonucleotides in serum samples with the use of ultra high performance liquid chromatography coupled with tandem mass spectrometry[J]. Talanta,2019,196:54-63.
ANAND P,KOLETO M,KANDULA D R,et al. Novel hydrophilic-phase extraction,HILIC and high-resolution MS quantification of an RNA oligonucleotide in plasma[J]. Bioanalysis,2022,14(1):47-62.
MACNEILL R,HUTCHINSON T,ACHARYA V,et al. An oligonucleotide bioanalytical LC-SRM methodology entirely liberated from ion-pairing[J]. Bioanalysis,2019,11(12):1157-1169.
YUAN L,DUPUIS J F,VRIONIS V,et al. A validated capillary microsampling liquid chromatography-tandem mass spectrometry method for quantification of antisense oligonucleotides in mouse serum[J]. Bioanalysis,2023,15(12):683-694.
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution