浏览全部资源
扫码关注微信
1.重庆大学附属江津医院眼科,重庆 402260
2.重庆大学附属江津医院肾脏与风湿免疫科,重庆 402260
Published:15 February 2025,
Received:18 July 2024,
Revised:25 December 2024,
Accepted:2025-01-14
移动端阅览
刘涵,张蓝月,沈强等.眼科微针药物递送的研究进展 Δ[J].中国药房,2025,36(03):367-372.
LIU Han,ZHANG Lanyue,SHEN Qiang,et al.Research progress on drug delivery by ophthalmic microneedle[J].ZHONGGUO YAOFANG,2025,36(03):367-372.
刘涵,张蓝月,沈强等.眼科微针药物递送的研究进展 Δ[J].中国药房,2025,36(03):367-372. DOI: 10.6039/j.issn.1001-0408.2025.03.19.
LIU Han,ZHANG Lanyue,SHEN Qiang,et al.Research progress on drug delivery by ophthalmic microneedle[J].ZHONGGUO YAOFANG,2025,36(03):367-372. DOI: 10.6039/j.issn.1001-0408.2025.03.19.
由于眼部存在生理屏障(包括外眼屏障和内眼屏障),使得常规眼科用药(滴眼液、眼膏、凝胶等)的生物利用度低,且到达眼后节困难。玻璃体注射虽然能使药物到达眼后节,但存在感染、损伤以及患者耐受性差等缺点。眼用微针突破了眼内外屏障,使药物能够精准到达治疗部位并能持续释放,很大程度地避免了眼内感染和损伤,提高了药物的生物利用度,作为眼部药物输送工具存在着明显的优势。眼用微针按使用方法可分为空心微针、可溶性微针和涂层微针。3种微针各具优势,在治疗细菌性和真菌性角膜炎、青光眼、渗出性老年性黄斑变性、糖尿病性黄斑水肿、非感染性葡萄膜炎、角膜新生血管甚至脉络膜黑色素瘤等疾病方面都有令人满意的表现。
The presence of physiological barriers in the eye (both external and internal) makes conventional ophthalmic medications (eye drops, ointments, gels, etc.) less bioavailable and difficult to reach the posterior segment of the eye. Although intravitreal injection can deliver drugs to the posterior segment of the eye, it has disadvantages such as infection, injury, and poor tolerance. Ophthalmic microneedle breaks through the intra- and extra-ocular barriers, enabling the drug to reach the target site accurately and to be released continuously greatly avoiding intraocular infections and injuries, and improving the bioavailability of the drug, which has obvious advantages as an ophthalmic drug delivery tool. Ophthalmic microneedle can be classified into hollow microneedle, dissolving microneedle, and coated microneedle according to the usage methods. Each type of microneedle has its own advantages and has shown satisfactory performance in the treatment of diseases such as bacterial and fungal keratitis, glaucoma, exudative age-related macular degeneration, diabetic macular edema, non-infectious uveitis, corneal neovascularization, and even choroidal melanoma.
微针药物递送眼科用药细菌性角膜炎真菌性角膜炎青光眼渗出性老年性黄斑变性糖尿病性黄斑水肿非感染性葡萄膜炎
drug deliveryophthalmic medicationbacterial keratitisfungal keratitisglaucomaexudative age-related macular degenerationdiabetic macular edemanon-infectious uveitis
TAVAKOLI S,PEYNSHAERT K,LAJUNEN T,et al. Ocular barriers to retinal delivery of intravitreal liposomes:impact of vitreoretinal interface[J]. J Control Release,2020,328:952-961.
GORANTLA S,RAPALLI V K,WAGHULE T,et al. Nanocarriers for ocular drug delivery:current status and translational opportunity[J]. RSC Adv,2020,10(46):27835-27855.
SUBRIZI A,DEL AMO E M,KORZHIKOV-VLAKH V,et al. Design principles of ocular drug delivery systems:importance of drug payload,release rate,and material properties[J]. Drug Discov Today,2019,24(8):1446-1457.
WU Y M,LIU Y Y,LI X Y,et al. Research progress of in situ gelling ophthalmic drug delivery system[J]. Asian J Pharm Sci,2019,14(1):1-15.
MOFIDFAR M,ABDI B,AHADIAN S,et al. Drug deli- very to the anterior segment of the eye:a review of current and future treatment strategies[J]. Int J Pharm,2021,607:120924.
KAUL S,NAGAICH U,VERMA N. Investigating nanostructured liquid crystalline particles as prospective ocular delivery vehicle for tobramycin sulfate:ex vivo and in vivo studies[J]. J Adv Pharm Technol Res,2021,12(4):356-361.
LIU L C,CHEN Y H,LU D W. Overview of recent advances in nano-based ocular drug delivery[J]. Int J Mol Sci,2023,24(20):1535.
VARELA-FERNÁNDEZ R,DÍAZ-TOMÉ V,LUACES-RODRÍGUEZ A,et al. Drug delivery to the posterior segment of the eye:biopharmaceutic and pharmacokinetic considerations[J]. Pharmaceutics,2020,12(3):269.
BORA K,KUSHWAH N,MAURYA M,et al. Assessment of inner blood-retinal barrier:animal models and methods[J]. Cells,2023,12(20):244.
GLOVER K,MISHRA D,GADE S,et al. Microneedles for advanced ocular drug delivery[J]. Adv Drug Deliv Rev,2023,201:11508.
PARIS J L,VORA L K,TORRES M J,et al. Microneedle array patches for allergen-specific immunotherapy[J]. Drug Discov Today,2023,28(5):103556.
吕晓燕,陈道远,苏林豫,等. 眼用微针药物递送系统研究进展[J]. 中国新药杂志,2020,29(24):2794-2800.
LYU X Y,CHEN D Y,SU L Y,et al. Research progress in ophthalmic microneedles drug delivery system[J]. Chin J New Drugs,2020,29(24):2794-2800.
ABD-EL-AZIM H,TEKKO I A,ALI A,et al. Hollow microneedle assisted intradermal delivery of hypericin lipid nanocapsules with light-enabled photodynamic therapy against skin cancer[J]. J Control Release,2022,348:849-869.
ALLMENDINGER A,BUTT Y L,MUELLER C. Intraocular pressure and injection forces during intravitreal injection into enucleated porcine eyes[J]. Eur J Pharm Biopharm,2021,166:87-93.
GADE S,GLOVER K,MISHRA D,et al. Hollow micro- needles for ocular drug delivery[J]. J Control Release,2024,371:43-66.
KIM Y C,OH K H,EDELHAUSER H F,et al. Formulation to target delivery to the ciliary body and choroid via the suprachoroidal space of the eye using microneedles[J]. Eur J Pharm Biopharm,2015,95(Pt B):398-406.
WU Y,VORA L K,DONNELLY R F,et al. Rapidly dissolving bilayer microneedles enabling minimally invasive and efficient protein delivery to the posterior segment of the eye[J]. Drug Deliv Transl Res,2023,13(8):2142-2158.
YU X Q,ZHAO J,FAN D D. The progress in the application of dissolving microneedles in biomedicine[J]. Polymers (Basel),2023,15(20):4059.
ROY G,GALIGAMA R D,THORAT V S,et al. Micro- needle ocular patch:fabrication,characterization,and ex-vivo evaluation using pilocarpine as model drug[J]. Drug Dev Ind Pharm,2020,46(7):1114-1122.
SARTAWI Z,BLACKSHIELDS C,FAISAL W. Dissol- ving microneedles:applications and growing therapeutic potential[J]. J Control Release,2022,348:186-205.
FITAIHI R,ABUKHAMEES S,CHUNG S H,et al. Optimization of stereolithography 3D printing of microneedle micro-molds for ocular drug delivery[J]. Int J Pharm,2024,658:124195.
MATADH A V,JAKKA D,PRAGATHI S G,et al. Polymer-coated polymeric microneedles for intravitreal delivery of dexamethasone[J]. Exp Eye Res,2023,231:109467.
JAKKA D,MATADH A V,SHANKAR V K,et al. Polymer-coated polymeric (PCP) microneedles for controlled delivery of drugs:dermal and intravitreal[J]. J Pharm Sci,2022,111(10):2867-2878.
BHATNAGAR S,SAJU A,CHEERLA K D,et al. Corneal delivery of besifloxacin using rapidly dissolving polymeric microneedles[J]. Drug Deliv Transl Res,2018,8(3):473-483.
CUI M Y,ZHENG M J,WIRAJA C,et al. Ocular deli- very of predatory bacteria with cryo-microneedles against eye infection[J]. Adv Sci (Weinh),2021,8(21):e2102327.
FANG Y R,ZHUO L,YUAN H,et al. Construction of graphene quantum dot-based dissolving microneedle patches for the treatment of bacterial keratitis[J]. Int J Pharm,2023,639:122945.
JIANG X,JIN Y L,ZENG Y N,et al. Self-implantable core-shell microneedle patch for long-acting treatment of keratitis via programmed drug release[J]. Small,2024,20(29):e2310461.
MAHFUFAH U,SYA’BAN MAHFUD M A,SAPUTRA M D,et al. Incorporation of inclusion complexes in the dissolvable microneedle ocular patch system for the efficiency of fluconazole in the therapy of fungal keratitis[J]. ACS Appl Mater Interfaces,2024,16(20):25637-25651.
SHI H,ZHOU J H,WANG Y,et al. A rapid corneal hea- ling microneedle for efficient ocular drug delivery[J]. Small,2022,18(4):e2104657.
ALBADR A A,TEKKO I A,VORA L K,et al. Rapidly dissolving microneedle patch of amphotericin B for intracorneal fungal infections[J]. Drug Deliv Transl Res,2022,12(4):931-94.
YADAV K S,RAJPUROHIT R,SHARMA S. Glaucoma:current treatment and impact of advanced drug delivery systems[J]. Life Sci,2019,221:362-376.
YAMAGISHI-KIMURA R,HONJO M,AIHARA M. Effect of a fixed combination of ripasudil and brimonidine on aqueous humor dynamics in mice[J]. Sci Rep,2024,14(1):7861.
DING K,SHEN J K,HAFIZ Z,et al. AAV8-vectored suprachoroidal gene transfer produces widespread ocular transgene expression[J]. J Clin Invest,2019,129(11):4901-4911.
CAMPOCHIARO P A,AVERY R,BROWN D M,et al. Gene therapy for neovascular age-related macular degene- ration by subretinal delivery of RGX-314:a phase 1/2a dose-escalation study[J]. Lancet,2024,403(10436):1563-1573.
JUNG J H,KIM S S,CHUNG H,et al. Six-month sustained delivery of anti-VEGF from in situ forming hydrogel in the suprachoroidal space[J]. J Control Release,2022,352:472-484.
KANSARA V S,MUYA L W,CIULLA T A. Evaluation of long-lasting potential of suprachoroidal axitinib suspension via ocular and systemic disposition in rabbits[J]. Transl Vis Sci Technol,2021,10(7):19.
BARAKAT M R,WYKOFF C C,GONZALEZ V,et al. Suprachoroidal CLS-TA plus intravitreal aflibercept for diabetic macular edema:a randomized,double-masked,parallel-design,controlled study[J]. Ophthalmol Retina,2021,5(1):60-70.
NAWAR A E. Effectiveness of suprachoroidal injection of triamcinolone acetonide in resistant diabetic macular edema using a modified microneedle[J]. Clin Ophthalmol,2022,16:3821-3831.
MUYA L,KANSARA V,CAVET M E,et al. Suprachoroidal injection of triamcinolone acetonide suspension:ocular pharmacokinetics and distribution in rabbits demonstrate high and durable levels in the chorioretina[J]. J Ocul Pharmacol Ther,2022,38(6):459-467.
YEH S,KHURANA R N,SHAH M,et al. Efficacy and safety of suprachoroidal CLS-TA for macular edema secondary to noninfectious uveitis:phase 3 randomized trial[J]. Ophthalmology,2020,127(7):948-955.
FITAIHI R,ABUKHAMEES S,ORLU M,et al. Trans- scleral delivery of dexamethasone-loaded microparticles using a dissolving microneedle array[J]. Pharmaceutics,2023,15(6):16.
ALRBYAWI H,ANNAJI M,FASINA O,et al. Rapidly dissolving trans-scleral microneedles for intraocular deli- very of cyclosporine A[J]. AAPS PharmSciTech,2024,25(2):28.
THAN A,LIU C H,CHANG H,et al. Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery[J]. Nat Commun,2018,9(1):44.
SAVINAINEN A,GROSSNIKLAUS H,KANG S,et al. Ocular distribution and efficacy after suprachoroidal injection of AU-011 for treatment of ocular melanoma[J]. Invest Ophth Vis Sci,2020,61:3615.
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution