浏览全部资源
扫码关注微信
黑龙江中医药大学教育部北药基础与应用研究重点实验室/黑龙江省中药及天然药物药效物质基础研究重点实验室,哈尔滨 150040
Received:14 November 2024,
Revised:11 March 2025,
Accepted:2025-03-22,
Published:30 April 2025
移动端阅览
吕邵娃,邬芸煜,刘泉莉等.类叶牡丹关节注射液治疗类风湿性关节炎的作用机制 Δ[J].中国药房,2025,36(08):926-931.
LYU Shaowa,WU Yunyu,LIU Quanli,et al.Mechanism of joint injection of Caulophyllum robustum Maxim in the treatment of rheumatoid arthritis[J].ZHONGGUO YAOFANG,2025,36(08):926-931.
吕邵娃,邬芸煜,刘泉莉等.类叶牡丹关节注射液治疗类风湿性关节炎的作用机制 Δ[J].中国药房,2025,36(08):926-931. DOI: 10.6039/j.issn.1001-0408.2025.08.06.
LYU Shaowa,WU Yunyu,LIU Quanli,et al.Mechanism of joint injection of Caulophyllum robustum Maxim in the treatment of rheumatoid arthritis[J].ZHONGGUO YAOFANG,2025,36(08):926-931. DOI: 10.6039/j.issn.1001-0408.2025.08.06.
目的
2
探究类叶牡丹关节注射液治疗类风湿性关节炎(RA)的作用机制。
方法
2
类叶牡丹中的主要皂苷类成分通过Swiss Target Prediction网站获取作用靶点,与从GeneCards、OMIM数据库中收集的RA治疗靶点并取交集,基于网络药理学建立交互网络,进行基因本体功能、京都基因与基因组百科全书(KEGG)通路富集分析。采用大耳兔背部注射弗氏完全佐剂建立RA模型进行验证,比较各组大耳兔关节炎指数评分、膝关节直径和痛阈值变化,观察滑膜组织形态变化,检测血清和关节滑液中肿瘤坏死因子α(TNF-α)、白细胞介素1β(IL-1β)、IL-6水平以及滑膝关节膜组织中Janus激酶2(JAK2)、信号转导与转录激活因子3(STAT3)蛋白的磷酸化水平。
结果
2
网络药理学筛选出类叶牡丹关节注射液与RA的交集靶点有143个,构建“药物-成分-靶点”网络后获取核心成分为刺囊酸、齐墩果酸、常春藤皂苷元、葳岩仙皂苷A、葳岩仙皂苷C等;蛋白质-蛋白质相互作用网络构建排前10名的核心靶点分别为
SRC
、
STAT3
、
MAPK1
、
EGFR
、
PIK3CA
、
MAPK3
、
GRB2
、
JUN
、
PTPN11
、
JAK2
;KEGG通路富集分析结果显示,类叶牡丹关节注射液治疗RA主要涉及JAK/STAT信号通路等。实验验证结果显示,与模型组比较,类叶牡丹关节注射液可减轻大耳兔膝关节肿胀和滑膜层增生,使下层结缔组织增生减少、炎症细胞和毛细血管数量减少;显著降低关节炎指数评分(类叶牡丹低剂量组除外),膝关节直径,血清和关节滑液中TNF-α、IL-1β、IL-6水平以及JAK2、STAT3蛋白的磷酸化水平(
P
<0.05或
P
<0.01);显著升高痛阈值水平(
P
<0.01)。
结论
2
类叶牡丹关节注射液中刺囊酸、齐墩果酸、常春藤皂苷元、葳岩仙皂苷A、葳岩仙皂苷C可能是缓解RA炎症反应的核心成分,其作用机制可能与抑制JAK/STAT信号通路、减轻炎症反应有关。
OBJECTIVE
2
To explore the mechanism of joint injection of
Caulophyllum robustum
Maxim in the treatment of rheumatoid arthritis (RA).
METHODS
2
The targets of main saponins in
C. robustum
Maxim were obtained from Swiss Target Prediction, and the RA treatment targets collected from the GeneCards and OMIM database were intercrossed to establish an interaction network based on network pharmacology. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. RA model was established by injecting complete Freund’s adjuvant into the back of rabbits for verification. The arthritis index score, knee diameter and pain threshold of rabbits were compared. Pathological examination of rabbit synovial tissue was carried out. The levels of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and IL-6 in rabbit serum and synovial fluid were detected. The phosphorylation levels of tyrosine protein Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) proteins in rabbit synovium were detected.
RESULTS
2
Network pharmacology identified 143 intersection targets between the drug and RA. After the construction of the “drug-component-target” network, the core components of the network were
ec
hinocystic acid, oleanolic acid, hederagenin, cauloside A and cauloside C, etc. Additionally, the top 10 core targets of PPI network were
SRC,
STAT3
,
MAPK1
,
EGFR
,
PIK3CA
,
MAPK3
,
GRB2
,
JUN
,
PTPN11
and
JAK2
. The results of KEGG pathway analysis showed that the JAK/STAT signaling pathway was mainly involved in the treatment of RA by joint injection of
C. robustum
Maxim. Results of validation test showed that compared with model group, joint injection of
C. robustum
Maxim could reduce the swelling of rabbit knee joint, relieve the hyperplasia of synovial layer, reduce the hyperplasia of lower connective tissue, and reduce the number of inflammatory cells and capillaries. The arthritis index score (excluding low-dose group of
C. robustum
Maxim), knee diameter, the levels of TNF-α, IL-1β and IL-6 in serum and synovial fluid, and the protein phosphorylation levels of JAK2 and STAT3 were decreased significantly (
P
<0.05 of
P
<0.01), while the pain threshold were reduced significantly (
P
<0.01).
CONCLUSIONS
2
The core components that may alleviate the inflammatory response of RA in joint injection of
C. robustum
Maxim
could include echinocystic acid, oleanolic acid, hederagenin, cauloside A, and cauloside C. Its mechanism may be related to the inhibition of JAK/STAT signaling pathway and the reduction of inflammatory responses.
KAUR C , MISHRA Y , KUMAR R , et al . Pathophysio-logy,diagnosis,and herbal medicine-based therapeutic implication of rheumatoid arthritis:an overview [J ] . Inflammopharmacology , 2024 , 32 ( 3 ): 1705 - 1720 .
陈平 , 王海东 , 杜小正 , 等 . 针刀疏筋解结术对类风湿关节炎家兔滑膜炎症的影响及作用机制研究 [J ] . 中国中医药信息杂志 , 2024 , 31 ( 7 ): 91 - 99 .
顾春宇 , 王亦巍 , 康建英 , 等 . 基于网络药理学技术探究雪莲注射液抗类风湿关节炎的作用及机制研究 [J ] . 中南药学 , 2025 , 23 ( 3 ): 628 - 637 .
李哲 , 陈斐斐 , 韩小康 , 等 . 山药多糖关节腔注射对兔膝关节骨性关节炎炎症因子及关节软骨代谢的影响 [J ] . 中国实验方剂学杂志 , 2021 , 27 ( 23 ): 88 - 96 .
吕邵娃 , 李春成 , 李国玉 , 等 . 类叶牡丹化学成分与药理作用机制研究进展 [J ] . 中药材 , 2020 , 43 ( 8 ): 2031 - 2036 .
国家医药管理局上海医药工业研究院 . 全国医药产品大全 [M ] . 北京 : 中国医药科技出版社 , 1988 : 458 .
LYU S W , DONG S Y , XU D , et al . Spectrum-effect relationships between fingerprints of Caulophyllum robustum Maxim and inhabited pro-inflammation cytokine effects [J ] . Molecules , 2017 , 22 ( 11 ): 1826 .
谯明 , 朱毅 , 胡君萍 , 等 . 肉苁蓉治疗炎症性肠病的作用机制预测及验证 [J ] . 中国药房 , 2024 , 35 ( 21 ): 2582 - 2589 .
杨馨 , 陈俊 , 路晓清 , 等 . 基于PTPN22干扰的艾灸对实验性类风湿性关节炎家兔滑膜细胞JAK1-STAT4信号通路的影响 [J ] . 成都中医药大学学报 , 2023 , 46 ( 1 ): 25 - 31 .
夏仕林 , 未怡 , 江小慢 , 等 . 三妙丸治疗类风湿关节炎主要活性成分及作用机制的探讨 [J ] . 中国中药杂志 , 2024 , 49 ( 19 ): 5204 - 5217 .
樊万君 , 张佳音 , 王宸 , 等 . 关节腔注射塞来昔布微球对大鼠类风湿性关节炎的治疗作用 [J ] . 中国药科大学学报 , 2021 , 52 ( 5 ): 573 - 578 .
WANG Q H , LV S W , GUO Y Y , et al . Pharmacological effect of Caulophyllum robustum on collagen-induced arthritis and regulation of nitric oxide,NF-κB,and proinflammatory cytokines in vivo and in vitro [J ] . Evid Based Complement Alternat Med , 2017 , 2017 : 8134321 .
ZHU M T , LV S W , SUN Y P , et al . Characterization of metabolites of five typical saponins from Caulophyllum robustum Maxim and their biotransformation in fibroblast-like synoviocytes by UHPLC-Q-Exactive-Plus-Orbitrap-MS [J ] . Arab J Chem , 2023 , 16 ( 6 ): 104757 .
刘亚虓 , 李世兴 , 唐家美 , 等 . 中药皂苷类成分治疗类风湿关节炎的作用机制 [J ] . 中南药学 , 2023 , 21 ( 11 ): 2969 - 2976 .
NAVARRO DEL HIERRO J , HERRERA T , FORNARI T , et al . The gastrointestinal behavior of saponins and its significance for their bioavailability and bioactivities [J ] . J Funct Foods , 2018 , 40 : 484 - 497 .
赵诗雨 , 笔雪艳 , 杨炳友 , 等 . 基于HDAC3/8分子互作技术的类叶牡丹抗类风湿性关节炎有效部位活性成分分析 [J ] . 中草药 , 2020 , 51 ( 8 ): 2117 - 2124 .
吕邵娃 , 任雨涵 , 祝明涛 , 等 . 类叶牡丹3种皂苷元对L929细胞炎症模型中HDAC表达的影响 [J ] . 中医药学报 , 2024 , 52 ( 6 ): 38 - 43 .
YANG J H , LI B , WU Q , et al . Echinocystic acid inhibits RANKL-induced osteoclastogenesis by regulating NF-κB and ERK signaling pathways [J ] . Biochem Biophys Res Commun , 2016 , 477 ( 4 ): 673 - 677 .
SHEN Y , TENG L , QU Y H , et al . Hederagenin suppresses inflammation an d cartilage degradation to ameliorate the progression of osteoarthritis:an in vivo and in vitro study [J ] . Inflammation , 2023 , 46 ( 2 ): 655 - 678 .
唐秀凤 , 高莹莹 , 李晓曦 , 等 . 淫羊藿苷和齐墩果酸协同地塞米松对糖皮质激素敏感型/抵抗型细胞内信号通路蛋白的影响 [J ] . 医学研究生学报 , 2018 , 31 ( 9 ): 910 - 915 .
CHENG Y C , ZHANG X , LIN S C , et al . Echinocystic acid ameliorates arthritis in SKG mice by suppressing Th17 cell differentiation and human rheumatoid arthritis fibroblast-like synoviocytes inflammation [J ] . J Agric Food Chem , 2022 , 70 ( 51 ): 16176 - 16187 .
李金益 , 田杰祥 , 宋敏 , 等 . 骨痨愈康丸通过JAK/STAT信号通路对类风湿关节炎大鼠滑膜组织的影响 [J ] . 中国病理生理杂志 , 2023 , 39 ( 8 ): 1475 - 1482 .
KONDO N , KURODA T , KOBAYASHI D . Cytokine networks in the pathogenesis of rheumatoid arthritis [J ] . Int J Mol Sci , 2021 , 22 ( 20 ): 10922 .
李夏林 , 张维新 . TNF-α通过唾液酸化促进小鼠破骨细胞分化 [J ] . 南方医科大学学报 , 2021 , 41 ( 12 ): 1773 - 1779 .
熊燕 , 白玉 , 李媛 , 等 . 艾灸对类风湿性关节炎患者血清中VEGF、IL-1β影响的研究 [J ] . 中华中医药学刊 , 2019 , 37 ( 1 ): 142 - 145 .
BRODERICK L , HOFFMAN H M . IL-1 and autoinflammatory disease:biology,pathogenesis and therapeutic targeting [J ] . Nat Rev Rheumatol , 2022 , 18 ( 8 ): 448 - 463 .
杨晓珊 , 王瑞瑞 , 李英 , 等 . IL-6介导JAK/STAT信号通路在胶原诱导性关节炎大鼠抑郁发生中的作用机制研究 [J ] . 中国免疫学杂志 , 2021 , 37 ( 17 ): 2053 - 2058 .
CRISPINO N , CICCIA F . JAK/STAT pathway and nociceptive cytokine signalling in rheumatoid arthritis and psoria-tic arthritis [J ] . Clin Exp Rheumatol , 2021 , 39 ( 3 ): 668 - 675 .
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution