浏览全部资源
扫码关注微信
1.重庆医科大学附属第一医院健康管理中心,重庆 400016
2.重庆医科大学附属璧山医院药学部,重庆 402760
3.重庆医科大学附属口腔医院科技教育外事科,重庆 401147
4.重庆医科大学附属第一医院药学部,重庆 400016
Received:17 December 2024,
Revised:25 April 2025,
Accepted:25 April 2025,
Published:30 May 2025
移动端阅览
杨洋,单雪峰,李海东等.成人住院患者用药风险预测模型的系统评价 Δ[J].中国药房,2025,36(10):1254-1259.
YANG Yang,SHAN Xuefeng,LI Haidong,et al.Systematic review on medication risk prediction models for hospitalized adult patients[J].ZHONGGUO YAOFANG,2025,36(10):1254-1259.
杨洋,单雪峰,李海东等.成人住院患者用药风险预测模型的系统评价 Δ[J].中国药房,2025,36(10):1254-1259. DOI: 10.6039/j.issn.1001-0408.2025.10.18.
YANG Yang,SHAN Xuefeng,LI Haidong,et al.Systematic review on medication risk prediction models for hospitalized adult patients[J].ZHONGGUO YAOFANG,2025,36(10):1254-1259. DOI: 10.6039/j.issn.1001-0408.2025.10.18.
目的
2
系统评价成人住院患者用药风险预测模型,为用药风险预测模型的开发和临床应用提供参考。
方法
2
检索PubMed、Embase、Web of Science、中国知网、万方数据、维普网、中国生物医学文献数据库,收集成人住院患者用药风险预测模型的文献,检索时限为建库至2024年5月。筛选文献、提取资料、评价文献质量后,对纳入研究的结果进行描述性分析。
结果
2
共纳入13项研究,涉及12个模型。9项研究采用Logistic回归算法建模,模型纳入预测因子数为3~11个;受试者工作特征曲线下面积为0.65~0.865。文献质量评价结果显示,10项研究为高偏倚风险,10项研究为高适用性风险。共得到31个预测因子,涉及患者基础信息15个、检验指标3个、用药信息5个、其他8个。
结论
2
现有成人住院患者用药风险预测模型以Logistic回归算法为主,预测因子多聚焦于人口学等基础指标,模型总体预测性能有待提高,研究的整体偏倚风险较高。
OBJECTIVE
2
To systematically evaluate medication risk prediction models for hospitalized adult patients and provide references for their development and clinical application.
METHODS
2
Databases including PubMed, Embase, Web of Science, CNKI, Wanfang data, VIP and CBM were searched for studies on medication risk prediction models from their inception to May 2024. After screening the literature, extracting data, and evaluating the quality of the literature, descriptive analysis was performed on the results of the included studies.
RESULTS
2
A total of 13 studies were included, involving 12 models. Nine studies used Logistic regression algorithm for modeling, and the number of included predictive factors ranged from 3 to 11; the area under the receiver operating characteristic curve ranged from 0.65 to 0.865. The literature quality evaluation results showed that 10 studies had high risk of bias; 10 studies had high applicability risk. A total of 31 predictive factors were extracted, including 15 items of basic patient information, 3 test indicators, and 5 items of medication information, and 8 others.
CONCLUSIONS
2
The existing medication risk prediction models for hospitalized adult inpatients are mainly Logistic regression algorithm, with predictive factors mainly focusing on basic indicators such as demographics. The overall prediction performance of the models needs to be improved, and the overall risk of bias is relatively high.
Pharmaceutical Care Network Europe(PCNE) . The PCNE classification V9.0 in Chinese Translation Mandarin 2019 [EB/OL ] . [ 2024-12-01 ] . https://www.pcne.org/upload/files/555_09_PCNE_classification_V9-1_final.pdf https://www.pcne.org/upload/files/555_09_PCNE_classification_V9-1_final.pdf .
MOONS K G M , DE GROOT J A H , BOUWMEESTER W , et al . Critical appraisal and data extraction for systema-tic reviews of prediction modelling studies:the CHARMS checklist [J ] . PLoS Med , 2014 , 11 ( 10 ): e1001744 .
WOLFF R F , MOONS K G M , RILEY R D , et al . PROBAST:a tool to assess the risk of bias and applica-bility of prediction model studies [J ] . Ann Intern Med , 2019 , 170 ( 1 ): 51 - 58 .
ROTEN I , MARTY S , BENEY J . Electronic screening of medical records to detect inpatients at risk of drug-related problems [J ] . Pharm World Sci , 2010 , 32 ( 1 ): 103 - 107 .
URBINA O , FERRÁNDEZ O , GRAU S , et al . Design of a score to identify hospitalized patients at risk of drug-related problems [J ] . Pharmacoepidemiol Drug Saf , 2014 , 23 ( 9 ): 923 - 932 .
URBINA O , FERRÁNDEZ O , LUQUE S , et al . Patient risk factors for developing a drug-related problem in a cardiology ward [J ] . Ther Clin Risk Manag , 2014 , 11 : 9 - 15 .
FERRÁNDEZ O , GRAU S , URBINA O , et al . Validation of a score to identify inpatients at risk of a drug-related problem during a 4-year period [J ] . Saudi Pharm J , 2018 , 26 ( 5 ): 703 - 708 .
KAUFMANN C P , STÄMPFLI D , MORY N , et al . Drug-associated risk tool:development and validation of a self-assessment questionnaire to screen for hospitalised patients at risk for drug-related problems [J ] . BMJ Open , 2018 , 8 ( 3 ): e016610 .
STÄMPFLI D , BOENI F , GERBER A , et al . Assessing the ability of the Drug-Associated Risk Tool(DART)questionnaire to stratify hospitalised older patients according to their risk of drug-related problems:a cross-sectional validation study [J ] . BMJ Open , 2018 , 8 ( 6 ): e021284 .
GEESON C , WEI L , FRANKLIN B D . Development and performance evaluation of the medicines optimisation assessment tool(MOAT):a prognostic model to target hospital pharmacists’ input to prevent medication-related problems [J ] . BMJ Qual Saf , 2019 , 28 ( 8 ): 645 - 656 .
SALDANHA V , ARAÚJO I B , LIMA S I V C , et al . Risk factors for drug-related problems in a general hospital:a large prospective cohort [J ] . PLoS One , 2020 , 15 ( 5 ): e0230215 .
HØJ K , PEDERSEN H S , LUNDBERG A S B , et al . External validation of the Medication Risk Score in polypharmacy patients in general practice:a tool for prioritizing patients at greatest risk of potential drug-related problems [J ] . Basic Clin Pharmacol Toxicol , 2021 , 129 ( 4 ): 319 - 331 .
TAYLOR S E , MITRI E A , HARDING A M , et al . Deve-lopment of screening tools to predict medication-related problems across the continuum of emergency department care:a prospective,multicenter study [J ] . Front Pharmacol , 2022 , 13 : 865769 .
彭杨 , 朱必敏 , 刘睿 , 等 . 终末期肾病患者用药风险预测模型的构建及评价 [J ] . 实用药物与临床 , 2023 , 26 ( 8 ): 699 - 704 .
杨碧香 , 杨森宾 , 杨志伟 . 老年2型糖尿病药物相关问题现状以及风险预测模型的构建与验证 [J ] . 实用中西医结合临床 , 2023 , 23 ( 14 ): 1 - 4,71 .
朱必敏 , 赵平 , 张露 , 等 . 基于风险预测模型指导2型糖尿病患者药物治疗管理模式构建及评价研究 [J ] . 实用药物与临床 , 2023 , 26 ( 11 ): 1004 - 1009 .
BOBROVA V , FIALOVÁ D , DESSELLE S , et al . Identifying potential drug-related problems among geriatric patients with use of an integrated clinical decision support tool [J ] . Front Pharmacol , 2022 , 13 : 761787 .
SEVERSON K A , CHAHINE L M , SMOLENSKY L A , et al . Discovery of Parkinson’s disease states and disease progression modelling:a longitudinal data study using machine learning [J ] . Lancet Digit Health , 2021 , 3 ( 9 ): e555 - e564 .
SCHWARTZMANN B , DHAMI P , UHER R , et al . Deve-loping an electroencephalography-based model for predic-ting response to antidepressant medication [J ] . JAMA Netw Open , 2023 , 6 ( 9 ): e2336094 .
LEOPOLDINO R D , SANTOS M T , COSTA T X , et al . Risk assessment of patient factors and medications for drug-related problems from a prospective longitudinal study of newborns admitted to a neonatal intensive care unit in Brazil [J ] . BMJ Open , 2019 , 9 ( 7 ): e024377 .
VALE BEZERRA P K , CHAVES CAVALCANTI J E , CARLETE FILHO S R , et al . Drug-related problems in hypertension and gestational diabetes mellitus:a hospital cohort [J ] . PLoS One , 2023 , 18 ( 4 ): e0284053 .
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution