浏览全部资源
扫码关注微信
1.重庆市中药研究院,重庆 400065
2.重庆中医药学院中药系,重庆 402760
3.重庆医科大学中医药学院,重庆 400016
副研究员,硕士。研究方向:中药药理学。E-mail:25967952@qq.com
副研究员,博士。研究方向:分子药理学。E-mail:qiangzhe@cqtcm.edu.cn
纸质出版日期:2023-10-30,
收稿日期:2023-04-05,
修回日期:2023-08-29,
扫 描 看 全 文
黄思行,吴书祎,张平等.百合地黄汤加味用于卒中后抑郁症的潜在作用靶点及机制 Δ[J].中国药房,2023,34(20):2483-2489.
HUANG Sixing,WU Shuyi,ZHANG Ping,et al.The potential targets and mechanisms of modified Baihe dihuang decoction applied in post-stroke depression[J].ZHONGGUO YAOFANG,2023,34(20):2483-2489.
黄思行,吴书祎,张平等.百合地黄汤加味用于卒中后抑郁症的潜在作用靶点及机制 Δ[J].中国药房,2023,34(20):2483-2489. DOI: 10.6039/j.issn.1001-0408.2023.20.07.
HUANG Sixing,WU Shuyi,ZHANG Ping,et al.The potential targets and mechanisms of modified Baihe dihuang decoction applied in post-stroke depression[J].ZHONGGUO YAOFANG,2023,34(20):2483-2489. DOI: 10.6039/j.issn.1001-0408.2023.20.07.
目的
2
探讨百合地黄汤加味(MBD/BDD)用于卒中后抑郁症(PSD)的潜在作用靶点及机制。
方法
2
通过网络药理学方法挖掘MBD/BDD治疗PSD的潜在靶点和关键途径。以局灶性脑缺血手术结合慢性不可预见的温和应激建立PSD模型大鼠,并随机分为PSD模型组、MBD/BDD组(12.6 g/kg,以生药总量计)、盐酸氟西汀(FLX)组(阳性对照,2.3 mg/kg),另设空白对照组,每组8只。各药物组大鼠灌胃相应药液,每天1次,连续21 d。通过旷场实验、强迫游泳实验评价MBD/BDD对模型大鼠抑郁样症状的干预效果;剖取各组大鼠脑组织并提取总RNA,进行转录组测序和生物信息学分析,并基于上述结果对变化显著的基因和常见神经营养因子进行mRNA和蛋白水平表达验证。
结果
2
共获得MBD/BDD抗抑郁相关靶基因131个(如
IL1B
、
AKT1
等),涉及神经活性配体-受体相互作用、环磷酸腺苷等信号通路。MBD/BDD可显著延长或增加PSD模型大鼠在中心方格花费的总时间及行进的总距离,显著缩短累计不动时间(
P
<0.05)。经MBD/BDD干预后,大鼠脑组织中发生变化的基因远多于FLX组,且PSD模型组、MBD/BDD组、FLX组的基因谱存在明显差异;MBD/BDD组与PSD模型组之间的差异表达基因(DEGs)共1 351个,其中178个显著下调、1 173个显著上调(
P
<0.05);这1 351个DEGs涉及神经元分化、化学突触传递调节等,并在轴突引导、胆碱能突触和神经活性配体-受体相互作用方面显著富集;MBD/BDD组大鼠脑组织中上调幅度排名前30位的基因均与神经元增殖、发育、分化和迁移有关。经MBD/BDD干预后,大鼠脑组织中
Fezf2
、
Arx
、
Ostn
、
Nrgn
基因和脑源性神经营养因子、酪氨酸激酶受体B蛋白的相对表达量均显著升高(
P
<0.05)。
结论
2
MBD/BDD的抗PSD作用可能与上调神经元增殖、发育、分化和迁移相关基因的表达,促进神经结构和功能的修复有关。
OBJECTIVE
2
To explore the potential targets and mechanisms of the modified Baihe dihuang decoction (MBD/BDD) applied in post-stroke depression (PSD).
METHODS
2
Network pharmacology was used to mine the potential targets and key pathways of MBD/BDD in the treatment of PSD. PSD model rats were induced by focal cerebral ischemia surgery combined with chronic unforeseen mild stress, and then were randomly divided into PSD model group, MBD/BDD group (12.6 g/kg, by raw drug), and fluoxetine hydrochloride (FLX) group (positive control, 2.3 mg/kg); a blank control group was also set up, with 8 rats in each group. Each administration group was given a corresponding medication solution by gavage once a day for 21 consecutive days. The intervention effect of MBD/BDD on depression-like symptoms in model rats was evaluated by open field and forced swimming tests. The brain tissues of rats in each group were dissected and total RNA was extracted for transcriptome sequencing and bioinformatics analysis. The mRNA and protein expressions of genes with significant changes and common neurotrophic factors were verified based on the above results.
RESULTS
2
A total of 131 MBD/BDD antidepressant-related target genes were obtained (such as
IL1B
and
AKT1
, etc.), which were closely related to neural active ligand-receptor interactions and cyclic adenosine monophosphate signaling pathway. MBD/BDD could significantly prolong or increase the total time spent and distance traveled in the central grid of PSD model rats, and significantly shorten the cumulative immobility time (
P
<0.05). After treatment with MBD/BDD, the number of genes that changed in rat brain tissue was much higher than that in the FLX group, and there were significant differences in gene profiles among the PSD model group, MBD/BDD group, and FLX group. There were 1 351 differentially expressed genes (DEGs) between the MBD/BDD group and the PSD model group, of which 178 were significantly down-regulated and 1 173 were significantly up-regulated (
P
<0.05). Above 1 351 DEGs were involved in neuronal differentiation, chemical synaptic transmission regulation. They were significantly enriched in axonal guidance, cholinergic synapses and neuroactive ligand-receptor interactions. The top 30 genes in terms of up-regulation in the brain tissue of rats of MBD/BDD group were all associated with neuronal proliferation, development, differentiation, and migration. After MBD/BDD intervention, the expressions of
Fezf2
,
Arx
,
Ostn
,
Nrgn
genes, brain-derived neurotrophic factor and tyrosine kinase receptor B protein in brain tissue of rats were significantly increased (
P
<0.05).
CONCLUSIONS
2
The anti-PSD effect of MBD/BDD may be related to the up-regulation of the expression of genes related to neuronal proliferation, development, differentiation and migration, as well as the promotion of neural structural and functional repair.
百合地黄汤加味卒中后抑郁网络药理学转录组学神经保护作用
post-stroke depressionnetwork pharmacologytranscriptomicsneuroprotection
DAS J,RAJANIKANT G K. Post stroke depression:the sequelae of cerebral stroke[J]. Neurosci Biobehav Rev,2018,90:104-114.
GUO J L,WANG J J,SUN W,et al. The advances of post-stroke depression:2021 update[J]. J Neurol,2022,269(3):1236-1249.
CAI W,MUELLER C,LI Y J,et al. Post stroke depression and risk of stroke recurrence and mortality:a syste-matic review and meta-analysis[J]. Ageing Res Rev,2019,50:102-109.
HU J J,WANG L Y,FAN K L,et al. The association between systemic inflammatory markers and post-stroke depression:a prospective stroke cohort[J]. Clin Interv Aging,2021,16:1231-1239.
宋敏,左政,李亚楠,等. 中西医治疗中风后抑郁症的概况[J]. 世界中医药,2021,16(10):1638-1642.
SONG M,ZUO Z,LI Y N,et al. Overview of traditional Chinese and western medicine in the treatment of post-stroke depression[J]. World Chin Med,2021,16(10):1638-1642.
王蕾,郑昌吉,崔然吉. 芍药苷作为抗抑郁药的神经保护作用机制[J]. 人参研究,2023,35(1):29-31.
WANG L,ZHENG C J,CUI R J. Neuroprotective mechanism of paeoniflorin as an antidepressant[J]. Ginseng Res,2023,35(1):29-31.
丁志敏,苏凯奇,高静,等. 线粒体功能障碍与脑卒中后抑郁的关系研究进展[J]. 中国全科医学,2022,25(12):1528-1532.
DING Z M,SU K Q,GAO J,et al. Research progress on the relationship between mitochondrial dysfunction and post-stroke depression[J]. Chin Gen Pract,2022,25(12):1528-1532.
WEN H M,WEYMANN K B,WOOD L,et al. Inflammatory signaling in post-stroke fatigue and depression[J]. Eur Neurol,2018,80(3/4):138-148.
SIM W S,CHOI S I,JUNG T D,et al. Antioxidant and anti-inflammatory effects of Lilium lancifolium bulbs extract[J]. J Food Biochem,2020,44(5):e13176.
CHI X S,XUE X Y,PAN J,et al. Mechanism of lily bulb and Rehmannia decoction in the treatment of lipopolysaccharide-induced depression-like rats based on metabolomics study and network pharmacology[J]. Pharm Biol,2022,60(1):1850-1864.
WANG H Q,LIU H T,WANG L,et al. Uncovering the active components,prospective targets,and molecular mechanism of Baihe zhimu decoction for treating depression using network pharmacology-based analysis[J]. J Ethnopharmacol,2021,281:114586.
张永莉,陈清智,耿文慧,等. 百合皂苷类化学成分提取及药理活性研究进展[J]. 亚热带植物科学,2022,51(3):233-240.
ZHANG Y L,CHEN Q Z,GENG W H,et al. Research advances on extraction and pharmacological effects of lily saponins[J]. Subtrop Plant Sci,2022,51(3):233-240.
ZHOU J,AN R F,HUANG X F. Genus Lilium:a review on traditional uses,phytochemistry and pharmacology[J]. J Ethnopharmacol,2021,270:113852.
张芳. 百合地黄汤治疗脑卒中后抑郁症的分析[J]. 中国医药指南,2019,17(7):159-160.
ZHANG F. Analysis of Baihe dihuang decoction in trea-ting post-stroke depression[J]. Guide China Med,2019,17(7):159-160.
潘艳芳. 柴胡加龙骨牡蛎汤合百合地黄汤治疗人工绝经后失眠症的临床观察[J]. 新疆中医药,2015,33(6):24-26.
PAN Y F. Clinical observation of Chaihu plus Longgu muli decoction combined with Baihe dihuang decoction in the treatment of artificial postmenopausal insomnia[J]. Xinjiang J Tradit Chin Med,2015,33(6):24-26.
周海燕,周俐红,张彩霞,等. 吴茱萸次碱对局灶性脑缺血模型大鼠脑组织病理、免疫失衡和氧化应激的调节作用及机制研究[J]. 中国免疫学杂志,2020,36(6):677-681.
ZHOU H Y,ZHOU L H,ZHANG C X,et al. Regulatory effect and mechanism of rutaecarpine on brain histopatho-logy,immune imbalance and oxidative stress in rats with focal cerebral ischemia[J]. Chin J Immunol,2020,36(6):677-681.
刘珍,刘永壮. 高通量测序数据的基因组拷贝数变异检测方法综述[J/OL]. 生物信息学,2023:1-11(2023-03-03)[2023-03-31]. https://kns.cnki.net/kcms/detail/23.1513.Q.20230302.1743.002.htmlhttps://kns.cnki.net/kcms/detail/23.1513.Q.20230302.1743.002.html.
LIU Z,LIU Y Z. A review of the methods for copy number variation detection using high-throughput sequencing data[J/OL]. Chin J Bioinform,2023:1-11(2023-03-03)[2023-03-31].https://kns.cnki.net/kcms/detail/23.1513.Q.20230302.1743.002.htmlhttps://kns.cnki.net/kcms/detail/23.1513.Q.20230302.1743.002.html.
FRANK D,GRUENBAUM B F,ZLOTNIK A,et al. Pathophysiology and current drug treatments for post-stroke depression:a review[J]. Int J Mol Sci,2022,23(23):15114.
胡晓东,席燕晴,王宗琦,等. 5-羟色胺选择性再摄取抑制剂抗抑郁药物对首发抑郁障碍病人认知功能的影响[J]. 中西医结合心脑血管病杂志,2022,20(21):4019-4021.
HU X D,XI Y Q,WANG Z Q,et al. Effect of 5-hydroxytryptamine selective reuptake inhibitor antidepressants on cognitive function of patients with first-episode depressive disorder[J]. Chin J Integr Med Cardio Cerebrovasc Dis,2022,20(21):4019-4021.
BIXBY A L,VANDENBERG A,BOSTWICK J R. Clinical management of bleeding risk with antidepressants[J]. Ann Pharmacother,2019,53(2):186-194.
YANG Y H,ZHANG M,ZHAO J J,et al. Effect of traditional Chinese medicine emotional therapy on post-stroke depression:a protocol for systematic review and meta-analysis[J]. Medicine,2021,100(14):e25386.
高甲. 针灸治疗中风后抑郁症疗效评价[J]. 亚太传统医药,2013,9(11):74-75.
GAO J. Evaluation of therapeutic effect of acupuncture and moxibustion on post-stroke depression[J]. Asia Pac Tradit Med,2013,9(11):74-75.
STARKSTEIN S E,HAYHOW B D. Treatment of post-stroke depression[J]. Curr Treat Options Neurol,2019,21(7):31.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构