浏览全部资源
扫码关注微信
昆明市第一人民医院药学部/云南省临床疾病个体化用药研究中心,昆明 650224
药师,硕士。研究方向:临床药理学。E-mail:1219816254@qq.com
主任药师,硕士生导师。研究方向:临床药理学。E-mail:songcs163@163.com
收稿日期:2024-05-11,
修回日期:2024-10-30,
录用日期:2024-11-05,
纸质出版日期:2024-12-30
移动端阅览
王国徽,李兴德,潘娅,等.3款个体化给药工具用于肾移植患者术后他克莫司的预测准确性及影响因素分析[J].中国药房,2024,35(24):3023-3028.
WANG Guohui,LI Xingde,PAN Ya,et al.Analysis of predictive accuracy and its influential factors of three individualized administration tools for tacrolimus after kidney transplantation[J].ZHONGGUO YAOFANG,2024,35(24):3023-3028.
王国徽,李兴德,潘娅,等.3款个体化给药工具用于肾移植患者术后他克莫司的预测准确性及影响因素分析[J].中国药房,2024,35(24):3023-3028. DOI: 10.6039/j.issn.1001-0408.2024.24.10.
WANG Guohui,LI Xingde,PAN Ya,et al.Analysis of predictive accuracy and its influential factors of three individualized administration tools for tacrolimus after kidney transplantation[J].ZHONGGUO YAOFANG,2024,35(24):3023-3028. DOI: 10.6039/j.issn.1001-0408.2024.24.10.
目的
2
评估JPKD、SmartDose、NextDose 3款个体化给药工具用于预测肾移植患者术后他克莫司给药剂量和血药浓度的准确性,并分析影响预测准确性的因素。
方法
2
回顾性纳入2021年1月-2023年6月在昆明市某三级甲等医院住院的肾移植术后使用他克莫司治疗的成年患者的临床资料。使用JPKD、SmartDose、NextDose 3款软件分别预测他克莫司给药剂量和血药浓度,计算实测值与预测值的绝对权重偏差(APE)、相对预测误差(PE)和预测良好率(APE<30%为预测效果良好);采用Pearson检验或Spearman检验分析3款软件预测给药剂量与实际给药剂量、血药浓度预测值与实测值的相关性,采用单因素方差分析考察影响3款软件预测准确性的因素。
结果
2
本研究共纳入110例住院患者,收集他克莫司给药剂量和血药浓度监测数据各193例次。JPKD、SmartDose、NextDose软件预测的他克莫司给药剂量分别为(2.0±0.7)、(2.7±1.9)、(1.8±0.8)mg,与实际给药剂量[(1.9±0.6)mg
]
的相关系数分别为0.841、0.450、0.247(
P
均小于0.001);APE中位数分别为6.00%、52.07%、30.40%,PE中位数分别为5.00%、18.50%、-3.50%,预测良好率分别为98.45%、30.05%、49.22%。上述3款软件预测的他克莫司血药浓度分别为(6.74±3.36)、(6.93±5.02)、9.00(5.80,12.60)ng/mL,与实测值[8.64(7.11,9.77)ng/mL
]
的相关系数分别为0.997、-0.066、0.920(
P
分别为<0.001、0.360、<0.001);APE中位数分别为5.54%、45.91%、35.56%,PE分别为-4.94%(中位数)、-17.05%(中位数)和36.93%(平均值),预测良好率分别为97.93%、32.64%、37.31%。单因素方差分析显示,给药剂量、血药浓度、体重、移植时间等与各软件的预测准确性有关(
P
<0.05)。
结论
2
3款个体化给药工具用于肾移植患者术后他克莫司给药剂量和血药浓度的预测良好率由高到低均为JPKD、NextDose、SmartDose软件,临床可优先考虑JPKD软件。
OBJECTIVE
2
To evaluate the accuracy of three individualized drug delivery tools, i.e. JPKD, SmartDose and NextDose, in predicting tacrolimus dose and blood concentration after kidney transplantation, and analyze the influential factors of prediction accuracy.
METHODS
2
The clinical data of adult hospitalized patients treated with tacrolimus after kidney transplantation from January 2021 to June 2023 were retrospectively collected. Three individualized dosing tools, i.e. JPKD, SmartDose and NextDose, were used to predict the dose and plasma concentration of tacrolimus. The absolute prediction error (APE) and prediction error (PE) between the measured value and the predicted value, and prediction success rate were calculated (APE<30% indicating a good forecast). Pearson assay or Spearman assay was used to analyze the correlation between the predicted dosage and actual dosage, as well as the predicted and measured blood concentration values using three software; univariate analysis was used to investigate the influential factors for prediction accuracy of JPKD, SmartDose and NextDose.
RESULTS
2
A total of 110 hospitalized patients were included in th
is study, and 193 tacrolimus doses and plasma concentrations were monitored. The predicted doses of JPKD, SmartDose and NextDose were (2.0±0.7), (2.7±1.9), (1.8±0.8) mg, their measured value was (1.9±0.6) mg, and the correlation coefficients between the predicted values and the measured value were 0.841, 0.450, 0.247 (
P
<0.001); the median APEs were 6.00%, 52.07% and 30.40%, and the median PEs were 5.00%, 18.50% and -3.50%; the prediction success rates were 98.45%, 30.05% and 49.22%. The predicted values of tacrolimus concentrations using JPKD, SmartDose, NextDose were (6.74±3.36), (6.93±5.02), 9.00(5.80±12.60) ng/mL, the measured value was 8.64(7.11,9.77) ng/mL, and the correlation coefficients between the predicted values and the measured value were 0.997 (
P
<0.001), -0.066 (
P
=0.360), 0.920 (
P
<0.001). The median APEs were 5.54%, 45.91% and 35.56%, and PEs were -4.94% (median), -17.050% (median) and 36.93% (average value); the prediction success rates were 97.93%, 32.64% and 37.31%. Univariate analysis showed that the dosage, blood concentration, body weight, transplantation time and others were related to the prediction accuracy (
P
<0.05).
CONCLUSIONS
2
The good prediction rates of tacrolimus dose and blood concentration in kidney transplant patients using three personalized drug delivery tools, from high to low, are JPKD, NextDose, and SmartDose, suggesting that JPKD can be prioritized in clinical use.
田普训 , 敖建华 , 李宁 , 等 . 器官移植免疫抑制剂临床应用技术规范: 2019版 [J ] . 器官移植 , 2019 , 10 ( 3 ): 213 - 226 .
TIAN P X , AO J H , LI N , et al . Technical specification for clinical application of immunosuppressive agents in organ transplantation:2019 edition [J ] . Organ Transplant , 2019 , 10 ( 3 ): 213 - 226 .
吴凡 , 李特 . 他克莫司血药浓度的影响因素研究进展 [J ] . 中国合理用药探索 , 2021 , 18 ( 8 ): 5 - 9 .
WU F , LI T . Research progress on influencing factors of plasma concentration of tacrolimus [J ] . Chin J Ration Drug Use , 2021 , 18 ( 8 ): 5 - 9 .
计建军 , 王长江 , 查丽 , 等 . 肾病综合征患者他克莫司血药浓度影响因素分析 [J ] . 中国药物应用与监测 , 2022 , 19 ( 6 ): 371 - 375 .
JI J J , WANG C J , ZHA L , et al . Analysis of influence factors of tacrolimus concentration in patients with nephrotic syndrome [J ] . Chin J Drug Appl Monit , 2022 , 19 ( 6 ): 371 - 375 .
陈文倩 , 张雷 , 张弋 , 等 . 实体器官移植他克莫司个体化治疗专家共识 [J/OL ] . 实用器官移植电子杂志 , 2022 , 10 ( 4 ): 301 - 308 [ 2024-04-27 ] . https://kns.cnki.net/kcms2/article/abstract?v=_kvDxI8xRKkd6D8IPHPhyR8it2ZeBYMUkwiOoDeJyeVQY93rrCGPOlbxpLVzi9m7uiDEwnnj-WjgLAn941iMsG-7VTSXk2p_bcnmgOVmnJqlyXwFnC-dSDkyaizyZ4DwJMgMNOqtIh5CwCbDCHAp_gYBc7X-x0mClTqcPMlSg8unlFwzW8xTtG005c0mFozNIA&unip-latform=NZKPT&language=CHS. DOI:10.3969/j.issn.2095-5332.2022.04.003 https://kns.cnki.net/kcms2/article/abstract?v=_kvDxI8xRKkd6D8IPHPhyR8it2ZeBYMUkwiOoDeJyeVQY93rrCGPOlbxpLVzi9m7uiDEwnnj-WjgLAn941iMsG-7VTSXk2p_bcnmgOVmnJqlyXwFnC-dSDkyaizyZ4DwJMgMNOqtIh5CwCbDCHAp_gYBc7X-x0mClTqcPMlSg8unlFwzW8xTtG005c0mFozNIA&unip-latform=NZKPT&language=CHS.DOI:10.3969/j.issn.2095-5332.2022.04.003 .
CHEN W Q , ZHANG L , ZHANG Y , et al . Expert consensus on individualized treatment of tacrolimus in solid organ transplantation [J/OL ] . Pract J Organ Transplant Electron Version , 2022 , 10 ( 4 ): 301 - 308 [ 2024-04-27 ] . https://kns.cnki.net/kcms2/article/abstract?v=_kvDxI8xRKkd6D8IP-HPhyR8it2ZeBYMUkwiOoDeJyeVQY93rrCGPOlbxpLV-zi9m7uiDEwnnjWjgLAn941iMsG-7VTSXk2p_bcnmgOV-mnJqlyXwFnCdSDkyaizyZ4DwJMgMNOqtIh5CwCbDCHAp_gYBc7X-x0mClTqcPMlSg8unlFwzW8xTtG005c0mF-ozNIA&uniplatform=NZKPT&language=CHS. DOI:10.3969/j.issn.2095-5332.2022.04.003 https://kns.cnki.net/kcms2/article/abstract?v=_kvDxI8xRKkd6D8IP-HPhyR8it2ZeBYMUkwiOoDeJyeVQY93rrCGPOlbxpLV-zi9m7uiDEwnnjWjgLAn941iMsG-7VTSXk2p_bcnmgOV-mnJqlyXwFnCdSDkyaizyZ4DwJMgMNOqtIh5CwCbDCHAp_gYBc7X-x0mClTqcPMlSg8unlFwzW8xTtG005c0mF-ozNIA&uniplatform=NZKPT&language=CHS.DOI:10.3969/j.issn.2095-5332.2022.04.003 .
林良沫 , 符祥俊 , 陈君 , 等 . 个体化给药辅助决策系统JPKD和SmartDose在万古霉素个体化给药中的应用 [J ] . 中国药房 , 2019 , 30 ( 19 ): 2690 - 2695 .
LIN L M , FU X J , CHEN J , et al . Application of indivi-dualized dosage auxiliary system JPKD and SmartDose in individualization administration of vancomycin [J ] . China Pharm , 2019 , 30 ( 19 ): 2690 - 2695 .
吴思 . 基于贝叶斯推断的个体化给药方案设计 [D ] . 桂林 : 桂林电子科技大学 , 2023 .
WU S . Design of individualized drug delivery scheme based on Bayesian inference [D ] . Guilin : Guilin University of Electronic Technology , 2023 .
KANTASIRIPITAK W , VAN DAELE R , GIJSEN M , et al . Software tools for model-informed precision dosing:how well do they satisfy the needs? [J ] . Front Pharmacol , 2020 , 11 : 620 .
邱语思 , 查娴 , 陈大宇 , 等 . 基于群体药动学的伏立康唑个体化给药方案设计和临床应用 [J ] . 中国临床药学杂志 , 2022 , 31 ( 6 ): 430 - 434 .
QIU Y S , ZHA X , CHEN D Y , et al . Establishment and clinical application of voriconazole individual dosage regimen design based on population pharmacokinetics [J ] . Chin J Clin Pharmacy , 2022 , 31 ( 6 ): 430 - 434 .
何娜 , 闫盈盈 , 刘斌 , 等 . 万古霉素个体化给药工具的适用性及预测准确性的比较研究 [J ] . 中国临床药理学杂志 , 2022 , 38 ( 23 ): 2884 - 2888 .
HE N , YAN Y Y , LIU B , et al . Investigation of the applicability and prediction accuracy of different pharma-cokinetic-guided individualized vancomycin dosing tools [J ] . Chin J Clin Pharmacol , 2022 , 38 ( 23 ): 2884 - 2888 .
刘雪姣 , 岳慧杰 , 李玉娇 , 等 . 个体化给药辅助决策系统pharmVAN、SmartDose对肾功能亢进患者万古霉素血药浓度预测能力的回顾性评估 [J ] . 药学与临床研究 , 2023 , 31 ( 1 ): 17 - 20 .
LIU X J , YUE H J , LI Y J , et al . Predictive performance of individualization dosage auxiliary systems pharmVAN and SmartDose on plasma vancomycin concentrations in patients with augmented renal clearance:a retrospective study [J ] . Pharm Clin Res , 2023 , 31 ( 1 ): 17 - 20 .
HAN L , XU F M , ZHANG X S , et al . Predictive performance of Smart Dose,PharmVan and JPKD on vancomycin plasma concentration [J ] . Zhonghua Wei Zhong Bing Ji Jiu Yi Xue , 2021 , 33 ( 3 ): 263 - 268 .
陈晨 , 周强 , 张晏洁 , 等 . 个体化给药辅助系统JPKD预测肾移植患者他克莫司血药浓度的准确性评估及影响因素分析 [J ] . 中国现代应用药学 , 2022 , 39 ( 2 ): 235 - 239 .
CHEN C , ZHOU Q , ZHANG Y J , et al . Evaluation of the accuracy and analysis of the influencing factors of individualized dosage auxiliary system JPKD in prediction of tacrolimus blood concentration in patients after renal transplantation [J ] . Chin J Mod Appl Pharm , 2022 , 39 ( 2 ): 235 - 239 .
周尔君 , 潘雁 , 朱敏 , 等 . 基于最大后验贝叶斯法的个体化用药研究进展 [J ] . 药学进展 , 2020 , 44 ( 6 ): 411 - 417 .
ZHOU E J , PAN Y , ZHU M , et al . Advance of research on individualized dosing based on maximum a posteriori Bayesian method [J ] . Prog Pharm Sci , 2020 , 44 ( 6 ): 411 - 417 .
吴云 , 王家莹 , 卢映蓉 , 等 . 器官移植患者他克莫司血药浓度影响因素的研究进展 [J ] . 医药导报 , 2022 , 41 ( 5 ): 669 - 674 .
WU Y , WANG J Y , LU Y R , et al . Research progress on influencing factors of tacrolimus concentration in patients undergoing organ transplant [J ] . Her Med , 2022 , 41 ( 5 ): 669 - 674 .
宋艳 , 成璐 , 贾淼鑫 , 等 . 肾病综合征患者他克莫司血药浓度监测的回顾性分析与评价 [J ] . 中国医院药学杂志 , 2017 , 37 ( 7 ): 654 - 658 .
SONG Y , CHENG L , JIA M X , et al . Retrospective analysis and evaluation of tacrolimus blood concentration monitoring data in patients with nephrotic syndrome [J ] . Chin J Hosp Pharm , 2017 , 37 ( 7 ): 654 - 658 .
KIRUBAKARAN R , STOCKER S L , HENNIG S , et al . Population pharmacokinetic models of tacrolimus in adult transplant recipients:a systematic review [J ] . Clin Pharmacokinet , 2020 , 59 ( 11 ): 1357 - 1392 .
NANGA T M , DOAN T T P , MARQUET P , et al . Toward a robust tool for pharmacokinetic-based personalization of treatment with tacrolimus in solid organ transplantation:a model-based meta-analysis approach [J ] . Br J Clin Pharmacol , 2019 , 85 ( 12 ): 2793 - 2823 .
李蕾 . 他克莫司产生菌的菌种选育及发酵工艺优化 [D ] . 上海 : 中国医药工业研究总院 , 2022 .
LI L . Breeding of tacrolimus-producing strain and optimization of fermentation process [D ] . Shanghai : China State Institute of Pharmaceutical Industry , 2022 .
BERG U B , NÉMETH A . Well preserved renal function in children with untreated chronic liver disease [J ] . J Pediatr Gastroenterol Nutr , 2018 , 66 ( 4 ): 575 - 580 .
吉莉娜 , 胡楠 , 钱卿 . 泊沙康唑对异体肾移植受者他克莫司血药浓度及肾功能的影响 [J ] . 中南药学 , 2023 , 21 ( 11 ): 3068 - 3072 .
JI L N , HU N , QIAN Q . Effect of posaconazole on the blood concentration of tacrolimus and renal function in allograft renal transplant recipients [J ] . Cent South Pharm , 2023 , 21 ( 11 ): 3068 - 3072 .
蔡宜朋 , 陈泉金 , 谢培华 , 等 . 五酯胶囊相较地尔硫 https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=90424955&type= 3.175 2.96417332 https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=90424967&type= https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=90424956&type= 2.89277220 对他克莫司血药浓度及安全性的影响 [J ] . 中国临床药理学与治疗学 , 2019 , 24 ( 8 ): 910 - 915 .
CAI Y P , CHEN Q J , XIE P H , et al . Effects of Wuzhi capsules on the blood concentration and safety of tacrolimus compared with diltiazem [J ] . Chin J Clin Pharmacol Ther , 2019 , 24 ( 8 ): 910 - 915 .
周艳 , 周波 , 吕凤俊 , 等 . 儿童肾病综合征患者他克莫司血药浓度影响因素分析 [J ] . 中国新药杂志 , 2019 , 28 ( 18 ): 2299 - 2304 .
ZHOU Y , ZHOU B , LYU F J , et al . Analysis of influence factors of tacrolimus concentration in pediatric patients with nephrotic syndrome [J ] . Chin J New Drugs , 2019 , 28 ( 18 ): 2299 - 2304 .
0
浏览量
60
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构