浏览全部资源
扫码关注微信
1.辽宁中医药大学附属医院泌尿外科,沈阳 110032
2.辽宁中医药大学药学院,辽宁 大连 116600
主治医师,硕士。研究方向:中西医结合治疗肾病。E-mail:zounaijian@126.com
副主任医师。研究方向:中西医结合治疗肾病。 E-mail:yingqiang_1126@163.com
纸质出版日期:2025-02-15,
收稿日期:2024-07-10,
修回日期:2024-12-23,
录用日期:2024-12-23
移动端阅览
邹乃建,孔亮,常雷等.活性氧响应型甲氨蝶呤修饰紫杉醇/淫羊藿苷胶束的工艺优化与体外抗肿瘤作用评价 Δ[J].中国药房,2025,36(03):285-292.
ZOU Naijian,KONG Liang,CHANG Lei,et al.Technology optimization and in vitro anti-tumor effect evaluation of reactive oxygen species-responsive methotrexate-modified paclitaxel/icariin micelles[J].ZHONGGUO YAOFANG,2025,36(03):285-292.
邹乃建,孔亮,常雷等.活性氧响应型甲氨蝶呤修饰紫杉醇/淫羊藿苷胶束的工艺优化与体外抗肿瘤作用评价 Δ[J].中国药房,2025,36(03):285-292. DOI: 10.6039/j.issn.1001-0408.2025.03.05.
ZOU Naijian,KONG Liang,CHANG Lei,et al.Technology optimization and in vitro anti-tumor effect evaluation of reactive oxygen species-responsive methotrexate-modified paclitaxel/icariin micelles[J].ZHONGGUO YAOFANG,2025,36(03):285-292. DOI: 10.6039/j.issn.1001-0408.2025.03.05.
目的
2
制备活性氧(ROS)响应型甲氨蝶呤(MTX)修饰紫杉醇(PTX)/淫羊藿苷(ICA)胶束(MTX-oxi-Ms@PTX/ICA),并对其进行工艺优化和体外抗肿瘤作用评价。
方法
2
通过协同毒性实验筛选PTX和ICA的协同毒性浓度范围。采用薄膜水合法制备胶束,通过响应面法优化其工艺,并评估按最优工艺制备的胶束的基本特性。考察胶束对小鼠肾癌细胞RENCA的细胞毒性、靶向性以及抑制侵袭和迁移的作用。
结果
2
协同毒性实验结果表明,PTX浓度为2.5~10 μmol/L、ICA浓度为5~15 μmol/L时表现出最强的协同毒性效果。MTX-oxi-Ms@PTX/ICA的最优工艺如下:聚乙烯己内酰胺-聚乙酸乙烯酯-聚乙二醇接枝共聚物(Soluplus
®
)质量为80 mg,Soluplus
®
和维生素E琥珀酸酯聚乙二醇1000质量比为4∶1(mg/mg),二硬脂酰基磷脂酰乙醇胺-聚乙二醇2000-酮缩硫醇-聚乙二醇5000为2 mg,二硬脂酰基磷脂酰乙醇胺-聚乙二醇2000-甲氨蝶呤为2 mg,PTX为1 mg,ICA为1.5 mg,水合温度35 °C,处方量为5 mL。最优工艺条件下,3批MTX-oxi-Ms@PTX/ICA中2个药物的平均包封率为92.75%;其临界胶束浓度为0.007 9 mg/mL,粒径为(62.09±1.68) nm,多分散性指数为0.046±0.032,Zeta电位为(-2.47±0.15) mV;放置30 d内,胶束粒度和多分散性指数均未发生明显变化;体外释放结果表明,MTX-oxi-Ms@PTX/ICA能够在氧化环境中更快地响应并释放药物。MTX-oxi-Ms@PTX/ICA对RENCA细胞的半数抑制浓度为(5.170±0.036) μmol/L;体外细胞摄取实验结果表明,与未修饰胶束相比,经MTX修饰的胶束对癌细胞具有更强的靶向效果,且其对RENCA细胞侵袭、迁移的抑制能力显著增强(
P
<0.05)。
结论
2
成功制备了MTX-oxi-Ms@PTX/ICA胶束,该胶束具有较高的包封率、较低的临界胶束浓度和良好的稳定性;且其对RENCA细胞有较明显的细胞毒性,并具有抑制癌细胞侵袭、迁移的作用。
OBJECTIVE
2
To prepare reactive oxygen species (ROS)-responsive methotrexate (MTX)-modified paclitaxel (PTX)/icariin (ICA) micelles (MTX-oxi-Ms@PTX/ICA), and perform technology optimization and
in vitro
anti-tumor effect evaluation.
METHODS
2
Synergistic toxicity concentration range of PTX and ICA was screened by synergistic toxicity test. The micelles were prepared by thin film hydration method, and their technology was optimized by response surface methodology. The fundamental characteristics of the micelles prepared by the optimal technology were evaluated. The micelles’ cytotoxicity, targeting ability to renal carcinoma RENCA cells of mice, and their inhibitory effects on invasion and migration were assessed.
RESULTS
2
Results of synergistic toxicity experiments demonstrated that the strongest synergistic effect occurred when PTX concentrations ranged from 2.5 to 10 μmol/L and ICA concentrations ranged from 5 to 15 μmol/L. The optimal technology of MTX-oxi-Ms@PTX/ICA was determined to include 80 mg Soluplus
®
, Soluplus
®
and TPGS1000 mass ratio of 4∶1 (mg/mg), 2 mg DSPE-PEG2000-TK-PEG5000, 2 mg DSPE-PEG2000-MTX, 1 mg PTX, and 1.5 mg ICA, with a hydration temperature of 35 ℃ and a formulation volume of 5 mL. Under the optimal conditions, average encapsulation efficiency of PTX and ICA in 3 batches of MTX-oxi-Ms@PTX/ICA reached 92.75%, the critical micelle concentration (CMC) was 0.007 9 mg/mL, the particle size was (62.09±1.68) nm, the polydispersity index (PDI) was 0.046±0.032, and the Zeta potential was (-2.47±0.15) mV. Within 30 days of placement, there was no significant change in particle size and polydispersity index of micelle.
In vitro
release experiments showed that MTX-oxi-Ms@PTX/ICA released drugs more rapidly in oxidative environments. The half maximal inhibitory concentration of MTX-oxi-Ms@PTX/ICA against RENCA cells was (5.170±0.036) μmol/L.
In vitro
cellular uptake experiments indicated that compared with unmodified micelles, MTX modified micelles had stronger targeting effects on cancer cells, and also significantly enhanced the inhibitory ability of invasion and migration of RENCA cells (
P
<0.05).
CONCLUSIONS
2
MTX-oxi-Ms@PTX/ICA micelles are successfully prepared, which exhibit high encapsulation efficiency, low critical micelle concentration, and good stability. These micelles demonstrate significant cytotoxicity against RENCA cells and effectively inhibit cancer cell invasion and migration.
活性氧响应型胶束甲氨蝶呤靶向药物递送紫杉醇淫羊藿苷
methotrexatetargeted drug deliverypaclitaxelicariin
MOGHBELI M,TAGHEHCHIAN N,AKHLAGHIPOUR I,et al. Role of forkhead box proteins in regulation of doxorubicin and paclitaxel responses in tumor cells:a comprehensive review[J]. Int J Biol Macromol,2023,248:125995.
LIU F Y,DING D N,WANG Y R,et al. Icariin as a potential anticancer agent:a review of its biological effects on various cancers[J]. Front Pharmacol,2023,14:1216363.
LIU Y F,YANG H,XIONG J,et al. Icariin as an emer- ging candidate drug for anticancer treatment:current status and perspective[J]. Biomed Pharmacother,2023,157:113991.
ZHANG X Y,SHI N N,CHEN M H,et al. Angiopep-2 modified dual drug-loaded liposomes with brain targeting functionality mitigate Alzheimer’s disease-related symptoms in APP/PS-1 mice[J]. J Drug Target,2023,31(6):634-645.
SOUSA-PIMENTA M,ESTEVINHO L M,SZOPA A, et al. Chemotherapeutic properties and side-effects asso- ciated with the clinical practice of terpene alkaloids:paclitaxel,docetaxel,and cabazitaxel[J]. Front Pharmacol,2023,14:1157306.
XU X Y,CHEN M X,JIANG S,et al. Endoplasmic reticulum-targeting iridium(Ⅲ) nanosonosensitizer amplifies immunogenic cell death for boosted tumor sono-immunotherapy[J]. Adv Funct Mater,2024,34(26):2314780.
SHI J F,WANG Y H,WU Y H,et al. Tumor microenvironment ROS/pH cascade-responsive supramolecular nanoplatform with ROS regeneration property for enhanced hepatocellular carcinoma therapy[J]. ACS Appl Mater Interfaces,2024,16(6):7576-7592.
LI P X,YU Y X,SONG H,et al. Potential applications of ROS-responsive silk fibroin materials in smart drug deli- very systems[J]. ACS Appl Polym Mater,2024,6(6):3413-3421.
LAN J S,QIN Y H,LIU L,et al. A carrier-free folate receptor-targeted ursolic acid/methotrexate nanodelivery system for synergetic anticancer therapy[J]. Int J Nanomedicine,2021,16:1775-1787.
YÜCEL O,ŞENGELEN A,EMIK S,et al. Folic acid-modified methotrexate-conjugated gold nanoparticles as nano-sized trojans for drug delivery to folate receptor-positive cancer cells[J]. Nanotechnology,2020,31(35):355101.
KONG L,SUI G Y,GUO R B,et al. A multi-strategy liposome targeting hepatocellular carcinoma cells and stem cells enhances the chemotherapy effect of doxorubicin in hepatocellular carcinoma[J]. J Drug Deliv Sci Technol,2023,81:104188.
KONG L,YU Y,YANG R,et al. Development and efficacy evaluation of nanoliposomes targeting CAFs-LCSCs communication for hepatocellular carcinoma treatment[J]. Chem Eng J,2024,496:154173.
LIU Y,WANG J H,SI J Q,et al. Octreotide modified liposomes that co-deliver paclitaxel and neferine effectively inhibit ovarian cancer metastasis by specifically binding to the SSTR2 receptors[J]. J Drug Deliv Sci Technol,2024,98:105851.
WANG J,KONG L,GUO R B,et al. Multifunctional icariin and tanshinone ⅡA co-delivery liposomes with potential application for Alzheimer’s disease[J]. Drug Deliv,2022,29(1):1648-1662.
YU Y,HE S Y,KONG L,et al. Brain-targeted multifunctional micelles delivering oridonin and phillyrin for synergistic therapy of Alzheimer’s disease[J]. J Drug Deliv Sci Technol,2023,87:104794.
LIU P X,ZHANG T Y,CHEN Q J,et al. Biomimetic dendrimer-peptide conjugates for early multi-target therapy of Alzheimer’s disease by inflammatory microenvironment modulation[J]. Adv Mater,2021,33(26):e2100746.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构