浏览全部资源
扫码关注微信
1.山东中医药大学药学院,济南 250355
2.山东省中医药研究院,济南 250014
3.国家中医药管理局中药蜜制和制炭炮制技术与原理重点研究室, 济南 250014
硕士研究生。研究方向:中药炮制。E-mail:1010946092@qq.com
研究员,博士。研究方向:中药炮制。E-mail:shidianhua81@163.com
收稿日期:2024-09-04,
修回日期:2025-02-21,
录用日期:2025-02-28,
纸质出版日期:2025-03-30
移动端阅览
李喜硕,苏本正,曲珍妮等.贯叶金丝桃质控方法提升及“辨色论质”研究 Δ[J].中国药房,2025,36(06):661-667.
LI Xishuo,SU Benzheng,QU Zhenni,et al.Improvement of quality control methods and “quality evaluation via color discrimination” of Hypericum perforatum[J].ZHONGGUO YAOFANG,2025,36(06):661-667.
李喜硕,苏本正,曲珍妮等.贯叶金丝桃质控方法提升及“辨色论质”研究 Δ[J].中国药房,2025,36(06):661-667. DOI: 10.6039/j.issn.1001-0408.2025.06.04.
LI Xishuo,SU Benzheng,QU Zhenni,et al.Improvement of quality control methods and “quality evaluation via color discrimination” of Hypericum perforatum[J].ZHONGGUO YAOFANG,2025,36(06):661-667. DOI: 10.6039/j.issn.1001-0408.2025.06.04.
目的
2
为贯叶金丝桃的质量控制提供参考。
方法
2
采用高效液相色谱法建立20批贯叶金丝桃的指纹图谱并测定其主要成分绿原酸、芦丁、金丝桃苷、异槲皮苷、萹蓄苷、槲皮苷、槲皮素的含量;采用SPSS 26.0软件进行聚类分析。采用电子眼测定贯叶金丝桃粉末的明度值(
L
*)、红绿值(
a
*)和黄蓝值(
b
*),采用机器学习算法建立基于外观色度值的贯叶金丝桃上述7种成分含量的预测模型,并采用均方根误差(RMSE)评价预测模型的预测性能。
结果
2
20批贯叶金丝桃指纹图谱共标定16个共有峰,指认出9个色谱峰,分别为绿原酸、芦丁、金丝桃苷、异槲皮苷、萹蓄苷、槲皮苷、槲皮素、贯叶金丝桃素和金丝桃素,20批样品与对照图谱的相似度为0.889~0.987;绿原酸、芦丁、金丝桃苷、异槲皮苷、萹蓄苷、槲皮苷、槲皮素含量分别为0.025%~0.166%、0.048%~0.339%、0.082%~0.419%、0.017%~0.209%、0.011%~0.134%、0.020%~0.135%、0.041%~0.235%;聚类分析结果显示,当欧氏距离为1.4时,18批合格贯叶金丝桃可聚为3类。20批贯叶金丝桃的
L
*为62.814~75.668,
a
*为1.409~3.490,
b
*为25.249~30.759;XGBoost、LightGBM、AdaBoost 3种预测模型的RMSE为0.008~0.070,拟合效果良好。除芦丁外,XGBoost模型预测其余6种成分的含量均具有较高的预测精度。
结论
2
所建指纹图谱及含量测定方法准确、重复性好、结果可靠;结合机器学习算法构建的基于外观色度值的含量预测模型可用于贯叶金丝桃的质量控制。
OBJECTIVE
2
To provide a reference for the quality control of
Hypericum perforatum
.
METHODS
2
High-performance liquid chromatography (HPLC) was used to establish fingerprints for 20 batches of
H. perforatum
and determine the contents of its main components: chlorogenic acid, rutin, hyperin, isoquercitrin, avicularin, quercitrin and quercetin. Cluster analysis was conducted using SPSS 26.0 software. The chromaticity values (luminance value
L
*, red-green value
a
*, and yellow-blue value
b
*) of
H. perforatum
powder were measured using electronic eye. A prediction model for the contents of seven components in
H. perforatum
based on
its appearance chromaticity values was established using machine learning algorithms. The predictive performance of the models was evaluated using root-mean-square-error (RMSE).
RESULTS
2
A total of 16 common peaks were calibrated in the fingerprints of 20 batches of
H. perforatum
, and 9 peaks were identified, which were chlorogenic acid, rutin, hyperin, isoquercitrin, avicularin, quercitrin, quercetin, hypericin and hyperforin; the similarities of the 20 batches of samples and reference fingerprint ranged from 0.889-0.987. The contents of chlorogenic acid, rutin, hyperin, isoquercitrin, avicularin, quercitrin and quercetin were 0.025%-0.166%, 0.048%- 0.339%, 0.082%-0.419%, 0.017%-0.209%, 0.011%-0.134%, 0.020%-0.135%, 0.041%-0.235%, respectively. Cluster analysis results showed that 18 batches of qualified
H. perforatum
were grouped into three categories, when the Euclidean distance was set to 1.4.
L
* of the 20 batches of
H. perforatum
ranged from 62.814 to 75.668,
a
* ranged from 1.409 to 3.490, and
b
* ranged from 25.249 to 30.759. RMSE of three prediction models, namely XGBoost, LightGBM, and AdaBoost, ranged from 0.008 to 0.070, indicating good fitting performance. XGBoost model predicted the contents of the other six components with high accuracy, except for rutin.
CONCLUSIONS
2
The established fingerprints and content determination methods are accurate, reproducible, and reliable. The content prediction model based on appearance chromaticity values, combined with machine learning algorithms, can be used for the quality control of
H. perforatum
.
国家药典委员会 . 中华人民共和国药典:一部 [M ] . 2020年版 . 北京 : 中国医药出版社 , 2020 : 242 .
National Pharmacopoeia Commission . Chinese pharmacopoeia:part Ⅰ [M ] . 2020 edition. Beijing : China Medical Science Press , 2020 : 242 .
闫翠起 , 赵曼茜 , 王炜 , 等 . HPLC测定不同产地和不同部位贯叶金丝桃中的金丝桃素 [J ] . 华西药学杂志 , 2017 , 32 ( 2 ): 211 - 213 .
YAN C Q , ZHAO M X , WANG W , et al . Determination of hypericin in the different parts of Hypericum perforatum from different habitats by HPLC [J ] . West China J Pharm Sci , 2017 , 32 ( 2 ): 211 - 213 .
盛可心 , 王昊冉 , 徐凌川 , 等 . 贯叶连翘药理作用及其机制研究新进展 [J ] . 中药药理与临床 , 2023 , 39 ( 3 ): 117 - 122 .
SHENG K X , WANG H R , XU L C , et al . Advances in the pharmacological effects and mechanisms of Hypericum perforatum L. [J ] . Pharmacol Clin Chin Mater Med , 2023 , 39 ( 3 ): 117 - 122 .
ALAHMAD A , ALGHORAIBI I , ZEIN R , et al . Identification of major constituents of Hypericum perforatum L. extracts in Syria by development of a rapid,simple,and reproducible HPLC-ESI-Q-TOF MS analysis and their antioxidant activities [J ] . ACS Omega , 2022 , 7 ( 16 ): 13475 - 13493 .
周海琴 , 何雨晴 , 陈盛君 . 基于UPLC指纹图谱和多指标成分定量的野生与栽培贯叶金丝桃的质量评价 [J ] . 中南药学 , 2023 , 21 ( 12 ): 3274 - 3280 .
ZHOU H Q , HE Y Q , CHEN S J . Quality analysis of wild and home hyperici perforati herba by UPLC fingerprint and multi-component quantitation [J ] . Cent South Pharm , 2023 , 21 ( 12 ): 3274 - 3280 .
LI X X , YAN Y , ZHANG J , et al . Hyperforin:a natural lead compound with multiple pharmacological activities [J ] . Phytochemistry , 2023 , 206 : 113526 .
李洋 , 陈健 , 张越 , 等 . 基于指纹图谱结合化学模式识别及多成分含量测定的白芍药材质量评价研究 [J ] . 中草药 , 2022 , 53 ( 1 ): 231 - 237 .
LI Y , CHEN J , ZHANG Y , et al . Determination of multi-components of Paeoniae Alba Radix based on fingerprints and chemical pattern recognition [J ] . Chin Tradit Herb Drugs , 2022 , 53 ( 1 ): 231 - 237 .
郭换 , 刘飞 , 梅国荣 , 等 . 色度分析花椒黄酮类成分含量与颜色值的相关性 [J ] . 中国实验方剂学杂志 , 2017 , 23 ( 6 ): 91 - 97 .
GUO H , LIU F , MEI G R , et al . Correlation between flavonoids and color values of Zanthoxyli Pericarpium based on chromatometry [J ] . Chin J Exp Tradit Med Formulae , 2017 , 23 ( 6 ): 91 - 97 .
薛淑娟 , 车奇涛 , 陈随清 . 基于“成分-颜色”关联分析地黄药材的质量及体外活性评价 [J ] . 时珍国医国药 , 2023 , 34 ( 11 ): 2791 - 2796 .
XUE S J , CHE Q T , CHEN S Q . Analysis of quality and activity evaluation in vitro of Radix Rehmanniae based on component color correl ation [J ] . Lishizhen Med Mater Med Res , 2023 , 34 ( 11 ): 2791 - 2796 .
刘振东 , 兰金旭 , 陈随清 . HPLC结合电子眼技术分析不同采收期的枸橘药材质量 [J ] . 中国中药杂志 , 2021 , 46 ( 20 ): 5253 - 5259 .
LIU Z D , LAN J X , CHEN S Q . Quality analysis of Citri Trifoliatae Fructus in different harvest time by HPLC combined with electronic eye technology [J ] . China J Chin Mater Med , 2021 , 46 ( 20 ): 5253 - 5259 .
周纯祎 , 王思雪 , 袁越 , 等 . 轻度认知障碍向阿尔兹海默病进展风险预测模型的系统评价 [J ] . 护理学报 , 2024 , 31 ( 12 ): 47 - 53 .
ZHOU C Y , WANG S X , YUAN Y , et al . Systematic evaluation of the risk prediction model of the progression of mild cognitive impairment to Alzheimer’s disease [J ] . J Nurs , 2024 , 31 ( 12 ): 47 - 53 .
张一凡 , 周苏娟 , 孟江 , 等 . 基于机器视觉系统的姜炭炮制程度判别及颜色-成分相关性分析 [J ] . 中国药房 , 2022 , 33 ( 22 ): 2712 - 2718 .
ZHANG Y F , ZHOU S J , MENG J , et al . Discrimination of processing degree of Zingiber officinale charcoal and analysis of the correlation between color and component based on machine vision system [J ] . China Pharm , 2022 , 33 ( 22 ): 2712 - 2718 .
李成举 , 刘寅笃 , 秦天元 , 等 . 基于机器学习的马铃薯叶片叶绿素含量估算 [J ] . 光谱学与光谱分析 , 2024 , 44 ( 4 ): 1117 - 1127 .
LI C J , LIU Y D , QIN T Y , et al . Estimation of chlorophyll content in potato leaves based on machine learning [J ] . Spectrosc Spectr Anal , 2024 , 44 ( 4 ): 1117 - 1127 .
尚超凡 , 周巧 , 朱娟娟 , 等 . 电子感官技术在中药质量辨识及炮制的应用概况 [J ] . 中草药 , 2024 , 55 ( 24 ): 8654 - 8663 .
SHANG C F , ZHOU Q , ZHU J J , et al . An overview of the application of electronic sensory technology in the identification and processing of traditional Chinese medicine quality [J ] . China Tradit Herb Drugs , 2024 , 55 ( 24 ): 8654 - 8663 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构