浏览全部资源
扫码关注微信
1.重庆医科大学附属第二医院Ⅰ期临床试验中心,重庆 400060
2.重庆医科大学药学院,重庆 400016
硕士研究生。研究方向:临床药学。E-mail:2022120930@stu.cqmu.edu.cn
主任药师,博士生导师,博士。研究方向:临床药学、药物早期临床研究。E-mail:303671@cqmu.edu.cn
收稿日期:2024-10-28,
修回日期:2025-03-28,
录用日期:2025-04-03,
纸质出版日期:2025-04-30
移动端阅览
杨莹莹,邵佳琪,向秋林等.生理药代动力学模型在EGFR-TKI精准治疗中的应用进展 Δ[J].中国药房,2025,36(08):1013-1018.
YANG Yingying,SHAO Jiaqi,XIANG Qiulin,et al.Advances in the application of physiologically-based pharmacokinetic model in EGFR-TKI precision therapy[J].ZHONGGUO YAOFANG,2025,36(08):1013-1018.
杨莹莹,邵佳琪,向秋林等.生理药代动力学模型在EGFR-TKI精准治疗中的应用进展 Δ[J].中国药房,2025,36(08):1013-1018. DOI: 10.6039/j.issn.1001-0408.2025.08.22.
YANG Yingying,SHAO Jiaqi,XIANG Qiulin,et al.Advances in the application of physiologically-based pharmacokinetic model in EGFR-TKI precision therapy[J].ZHONGGUO YAOFANG,2025,36(08):1013-1018. DOI: 10.6039/j.issn.1001-0408.2025.08.22.
表皮生长因子受体-酪氨酸激酶抑制剂(EGFR-TKI)是一类小分子肿瘤靶向治疗药物,是
EGFR
突变晚期非小细胞肺癌(NSCLC)的一线治疗药物,代表药物有吉非替尼、达可替尼、奥希替尼等。临床治疗中,肿瘤患者若存在药物联用、肝肾损伤等特殊情况,可能需调整EGFR-TKI的剂量。生理药代动力学(PBPK)模型可以预测药物在人体内的药代动力学(PK)过程,是临床剂量调整的重要工具。本文梳理了PBPK模型的建模方法、流程以及常用建模软件,总结了截至2024年6月30日PBPK模型在EGFR-TKI精准用药中的应用现状,发现PBPK模型的建模方法常用“自下而上”法和中间法,流程包括收集参数、房室选择、模型验证、模型应用4个步骤,常用软件有Simcyp、GastroPlus及开源软件PK-Sim等。PBPK模型可用于预测EGFR-TKI与代谢酶诱导剂或抑制剂、抑酸药、中西药联用时的药物-药物相互作用,结合基因组学调整药物剂量,预测特殊人群(肝肾功能不全患者、儿童患者)PK过程,评价药物的疗效和安全性,以及从动物模型外推预测人体PK等。
Ep
idermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) represent a class of small-molecule targeted therapeutics for oncology treatment, and serve as first-line therapy for advanced non-small cell lung cancer (NSCLC) with
EGFR
-sensitive mutations, with representative agents including gefitinib, dacomitinib, and osimertinib. In clinical practice, dose adjustment of EGFR-TKI may be required for cancer patients under special circumstances such as drug combinations or hepatic/renal impairment. Physiologically-based pharmacokinetic (PBPK) model, capable of predicting pharmacokinetic (PK) processes in humans, has emerged as a vital tool for clinical dose optimization. This article sorts the modeling methodologies, workflows, and commonly used software tools for PBPK model, and summarizes the current applications of PBPK model in EGFR-TKI precision therapy as of June 30, 2024. Findings demonstrate that PBPK modeling methods commonly employ the “bottom-up” approach and the middle-out approach. The process typically involves four steps: parameter collection, compartment selection, model validation, and model application. Commonly used software for modeling includes Simcyp, GastroPlus, and open-source software such as PK-Sim. PBPK model can be utilized for predicting drug-drug interactions of EGFR-TKI co-administered with metabolic enzyme inducers or inhibitors, acid-suppressive drugs, or traditional Chinese and Western medicines. It can also adjust dosages in conjunction with genomics, predict PK processes in special populations (such as patients with liver or kidney dysfunction, pediatric patients), evaluate the efficacy and safety of drugs, and extrapolate PK predictions from animal models to humans.
FAVORITO V , RICCIOTTI I , DE GIGLIO A , et al . Non-small cell lung cancer:an update on emerging EGFR-targeted therapies [J ] . Expert Opin Emerg Drugs , 2024 , 29 ( 2 ): 139 - 154 .
JOHNSON M , GARASSINO M C , MOK T , et al . Treatment strategies and outcomes for patients with EGFR-mutant non-small cell lung cancer resistant to EGFR tyrosine kinase inhibitors:focus on novel therapies [J ] . Lung Cancer , 2022 , 170 : 41 - 51 .
KRSTEVSKA A , ĐURIŠ J , IBRIĆ S , et al . In-depth analysis of physiologically based pharmacokinetic(PBPK)mo-deling utilization in different application fields using text mining tools [J ] . Pharmaceutics , 2022 , 15 ( 1 ): 107 .
ZHUANG X M , LU C . PBPK modeling and simulation in drug research and development [J ] . Acta Pharm Sin B , 2016 , 6 ( 5 ): 430 - 440 .
孙琦 , 李晓冰 , 何晓静 , 等 . 生理药动学模型的研究与应用进展 [J ] . 药物流行病学杂志 , 2020 , 29 ( 4 ): 280 - 284 .
TSAMANDOURAS N , ROSTAMI-HODJEGAN A , AARONS L . Combining the ‘bottom up’ and ‘top down’ approaches in pharmacokinetic modelling:fitting PBPK models to observed clinical data [J ] . Br J Clin Pharmacol , 2015 , 79 ( 1 ): 48 - 55 .
王乐 , 夏彬彬 , 陈世财 . 生理药代动力学模型在临床合理用药中的应用 [J ] . 中国临床药理学杂志 , 2023 , 39 ( 1 ): 127 - 130 .
郑亮 , 曾金 , 刘鑫 , 等 . 药动学研究常用软件介绍 [J ] . 中国医院药学杂志 , 2020 , 40 ( 23 ): 2484 - 2489 .
BÄCKMAN P , ARORA S , COUET W , et al . Advances in experimental and mechanistic computational models to understand pulmonary exposure to inhaled drugs [J ] . Eur J Pharm Sci , 2018 , 113 : 41 - 52 .
CHEN J , LIU D Y , ZHENG X , et al . Relative contributions of the major human CYP450 to the metabolism of icotinib and its implication in prediction of drug-drug interaction between icotinib and CYP3A4 inhibitors/indu-cers using physiologically based pharmacokinetic modeling [J ] . Expert Opin Drug Metab Toxicol , 2015 , 11 ( 6 ): 857 - 868 .
ZHOU L , HE J , XIONG W , et al . Phase Ⅰ trial of icotinib combined with whole-brain radiation therapy for EGFR-mutated non-small cell lung cancer patients with brain metastases [J ] . Int J Radiat Oncol , 2014 , 90 ( 5 ): S38 - S39 .
PILLA REDDY V , WALKER M , SHARMA P , et al . Development,verification,and prediction of osimertinib drug-drug interactions using PBPK modeling approach to inform drug label [J ] . CPT Pharmacometrics Syst Pharmacol , 2018 , 7 ( 5 ): 321 - 330 .
LIANG F , ZHANG Y M , XUE Q , et al . Integrated PBPK-EO modeling of osimertinib to predict plasma concentrations and intracranial EGFR engagement in patients with brain metastases [J ] . Sci Rep , 2024 , 14 : 12736 .
MOLTÓ J , RAJOLI R , BACK D , et al . Use of a physio-logically based pharmacokinetic model to simulate drug-drug interactions between antineoplastic and antiretroviral drugs [J ] . J Antimicrob Chemother , 2017 , 72 ( 3 ): 805 - 811 .
HRGOVCIC A S , GRUBER A , DITTRICH C , et al . P-168 Multiple dose pharmacokinetics of erlotinib when combined with gastric acid reducing agents:a comparison with a physiologically based pharmacokinetic model [J ] . Ann Oncol , 2018 ,29:v47.
DONG Z Q , LI J , WU F , et al . Application of physiologically-based pharmacokinetic modeling to predict gastric pH-dependent drug-drug interactions for weak base drugs [J ] . CPT Pharmacometrics Syst Pharmacol , 2020 , 9 ( 8 ): 456 - 465 .
LIU J , LIN S , HUYNH A , et al . Effects of H 2 -receptor antagonists on the exposure of dacomitinib [J ] . Pharmaceutics , 2024 , 16 ( 1 ): 118 .
DELIWALA S S , HAMID K , GOYAL H , et al . Proton pump inhibitors versus histamine-2-receptor antagonists for stress ulcer prophylaxis in critically ill patients:a meta-analysis and trial sequential analysis [J ] . J Clin Gastroenterol , 2022 , 56 ( 3 ): 204 - 217 .
张露丹 , 左旭锐 , 刘凡琪 , 等 . 应用定量药理学模型开展中西药相互作用的研究进展 [J ] . 中草药 , 2024 , 55 ( 6 ): 1799 - 1805 .
EL BIALI M , WÖLFL-DUCHEK M , JACKWERTH M , et al . St. John’s wort extract with a high hyperforin content does not induce P-glycoprotein activity at the human blood-brain barrier [J ] . Clin Transl Sci , 2024 , 17 ( 5 ): e13804 .
MASHAYEKHI-SARDOO H , MASHAYEKHI-SARDOO A , ROUFOGALIS B D , et al . Impact of curcumin on microsomal enzyme activities:drug interaction and chemopreventive studies [J ] . Curr Med Chem , 2021 , 28 ( 34 ): 7122 - 7140 .
PILLA REDDY V , JO H , NEUHOFF S . Food constituent- and herb-drug interactions in oncology:influence of quantitative modelling on drug labelling [J ] . Br J Clin Pharmacol , 2021 , 87 ( 10 ): 3988 - 4000 .
CHEN Y X , ZHOU D S , TANG W F , et al . Physiologically based pharmacokinetic modeling to evaluate the systemic exposure of gefitinib in CYP2D6 ultrarapid metabolizers and extensive metabolizers [J ] . J Clin Pharmacol , 2018 , 58 ( 4 ): 485 - 493 .
CHEONG E J Y , NG D Z W , CHIN S Y , et al . Application of a physiologically based pharmacokinetic model of rivaroxaban to prospective simulations of drug-drug-disease interactions with protein kinase inhibitors in cancer-associated venous thromboembolism [J ] . Br J Clin Pharmacol , 2022 , 88 ( 5 ): 2267 - 2283 .
SHARMA J , LV H , GALLO J M . Intratumoral modeling of gefitinib pharmacokinetics and pharmacodynamics in an orthotopic mouse model of glioblastoma [J ] . Cancer Res , 2013 , 73 ( 16 ): 5242 - 5252 .
LIANG F , ZHANG Y M , XUE Q , et al . Exploring inter-ethnic and inter-patient variability and optimal dosing of osimertinib:a physiologically based pharmacokinetic modeling approach [J ] . Front Pharmacol , 2024 , 15 : 1363259 .
DARRÉ H , MASSON P , NATIVEL A , et al . Comparing the efficacy of two generations of EGFR-TKIs:an integrated drug-disease mechanistic model approach in EGFR-mutated lung adenocarcinoma [J ] . Biomedicines , 2024 , 12 ( 3 ): 704 .
JAKUBIAK P , WAGNER B , GRIMM H P , et al . Development of a unified dissolution and precipitation model and its use for the prediction of oral drug absorption [J ] . Mol Pharm , 2016 , 13 ( 2 ): 586 - 598 .
NARITOMI Y , SANOH S , OHTA S . Utility of chimeric mice with humanized liver for predicting human pharmacokinetics in drug discovery:comparison with in vitro - in vivo extrapolation and allometric scaling [J ] . Biol Pharm Bull , 2019 , 42 ( 3 ): 327 - 336 .
BI Y W , DENG J X , MURRY D J , et al . A whole-body physiologically based pharmacokinetic model of gefitinib in mice and scale-up to humans [J ] . AAPS J , 2016 , 18 ( 1 ): 228 - 238 .
VAN DE STADT E A , YAQUB M , LAMMERTSMA A A , et al . Identifying advanced stage NSCLC patients who benefit from afatinib therapy using 18 F-afatinib PET/CT imaging [J ] . Lung Cancer , 2021 , 155 : 156 - 162 .
BAHCE I , YAQUB M , SMIT E F , et al . Personalizing NSCLC therapy by characterizing tumors using TKI-PET and immuno-PET [J ] . Lung Cancer , 2017 , 107 : 1 - 13 .
YAQUB M , BAHCE I , VOORHOEVE C , et al . Quantitative and simplified analysis of 11 C-erlotinib studies [J ] . J Nucl Med , 2016 , 57 ( 6 ): 861 - 866 .
BARTELINK I H , VAN DE STADT E A , LEEUWERIK A F , et al . Physiologically based pharmacokinetic(PBPK)modeling to predict PET image quality of three generations EGFR TKI in advanced-stage NSCLC patients [J ] . Pharmaceuticals(Basel) , 2022 , 15 ( 7 ): 796 .
GRUBER A , CZEJKA M , BUCHNER P , et al . Monito-ring of erlotinib in pancreatic cancer patients during long-time administration and comparison to a physiologically based pharmacokinetic model [J ] . Cancer Chemother Pharmacol , 2018 , 81 ( 4 ): 763 - 771 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构