浏览全部资源
扫码关注微信
齐齐哈尔医学院附属第二医院药学部临床药学室,黑龙江 齐齐哈尔 161000
主管药师。研究方向:药理学。E-mail:lydiacz@163.com
副主任药师。研究方向:临床药学、药剂学。E-mail:22647357@qq.com
收稿日期:2024-11-07,
修回日期:2025-04-14,
录用日期:2025-04-21,
纸质出版日期:2025-06-30
移动端阅览
李瑜多,杜娟,刘云龙等.透明质酸修饰的载大黄素多壁碳纳米管递药系统的制备及对乳腺癌细胞的抑制作用研究 Δ[J].中国药房,2025,36(12):1463-1469.
LI Yuduo,DU Juan,LIU Yunlong,et al.Preparation of HA-modified emodin-contained multi-walled carbon nanotubes drug delivery system and its inhibitory effect on breast cancer cells[J].ZHONGGUO YAOFANG,2025,36(12):1463-1469.
李瑜多,杜娟,刘云龙等.透明质酸修饰的载大黄素多壁碳纳米管递药系统的制备及对乳腺癌细胞的抑制作用研究 Δ[J].中国药房,2025,36(12):1463-1469. DOI: 10.6039/j.issn.1001-0408.2025.12.08.
LI Yuduo,DU Juan,LIU Yunlong,et al.Preparation of HA-modified emodin-contained multi-walled carbon nanotubes drug delivery system and its inhibitory effect on breast cancer cells[J].ZHONGGUO YAOFANG,2025,36(12):1463-1469. DOI: 10.6039/j.issn.1001-0408.2025.12.08.
目的
2
制备透明质酸(HA)修饰的负载大黄素(EMD)的多壁碳纳米管(MWCNTs)递药系统(HA-MWCNTs-EMD),并研究其对乳腺癌细胞的体外抑制作用。
方法
2
将EMD负载于MWCNTs,制得递药系统MWCNTs-EMD;进一步以HA进行修饰,制得递药系统HA-MWCNTs-EMD;对上述两种递药系统进行表征。以游离EMD为参照,考察上述两种递药系统的体外释药情况,检测两种乳腺癌细胞(MCF-7、MDA-MB-231细胞)对系统中EMD的摄取情况,并检测两种递药系统对两种乳腺癌细胞表面糖蛋白分化群44(CD44)表达、活力、凋亡、乳酸脱氢酶(LDH)释放量的影响。
结果
2
MWCNTs-EMD、HA-MWCNTs-EMD的包封率均为(63.52±2.74)%,载药量分别为(25.01±1.83)%、(12.13±1.96)%,粒径分别为(865.95±2.16)、(351.86±1.68)nm,多分散性指数分别为0.54±0.02、0.23±0.01,Zeta电位分别为(23.87±0.14)、(-42.79±0.39)mV。MWCNTs-EMD、HA-MWCNTs-EMD在2、4、6、8、10、12、24 h时的EMD累积释放量均显著低于同期游离EMD,而HA-MWCNTs-EMD显著高于同期MWCNTs-EMD(
P
<0.05);两种乳腺癌细胞对MWCNTs-EMD、HA-MWCNTs-EMD中EMD的摄取量均显著高于其对游离EMD的摄取量(
P
<0.05);与游离EMD组比较,MWCNTs-EMD、HA-MWCNTs-EMD组两种细胞的凋亡率、LDH释放量均显著升高,表面CD44的表达(MWCNTs-EMD组除外)、细胞活力均显著下调或降低,且HA-MWCNTs-EMD的作用更显著(
P
<0.05)。
结论
2
成功制备负载EMD的新型递药系统HA-MWCNTs-EMD;该递药系统具有一定的缓释作用,可明显降低乳腺癌细胞活力,促进其凋亡并增加LDH释放,且上述抗乳腺癌作用明显强于游离EMD和MWCNTs-EMD。
OBJECTIVE
2
To prepare hyaluronic acid (HA)-modified emodin (EMD)-contained multi-walled carbon nanotubes (MWCNTs) drug delivery system (HA-MWCNTs-EMD) and explore its
in vitro
inhibitory effect on breast cancer cells.
METHODS
2
EMD was loaded onto MWCNTs to prepare a drug delivery system MWCNTs-EMD; subsequently, the system was further modified with HA to obtain the drug delivery system HA-MWCNTs-EMD. The two drug delivery systems mentioned above were characterized. With free EMD as the reference, the drug release
in vitro
of the above two drug delivery systems was investigated; the uptake of EMD by two breast cancer cells (MCF-7, MDA-MB-231 cells) was detected. The impacts of the above two drug delivery systems on the expression of surface glycoprotein differentiation group 44 (CD44), activity, apoptosis and lactate dehydrogenase (LDH) release of two breast cancer cells were detected.
RESULTS
2
The encapsulation efficiencies of MWCNTs-EMD and HA-MWCNTs-EMD were both (63.52±2.74)%, with drug loading rates of (25.01±1.83)% and (12.13±1.96)%, particle sizes of (865.95±2.16) and (351.86±1.68) nm, polydispersity indexes of 0.54±0.02 and 0.23±0.01, and Zeta potentials of (23.87±0.14) and (-42.79±0.39) mV, respectively. The 2, 4, 6, 8, 10, 12 and 24-hour cumulative release rates of EMD in MWCNTs-EMD and HA-MWCNTs-EMD were significantly lower than those in free EMD, while the cumulative release rate of HA-MWCNTs-EMD was significantly higher than that of MWCNTs-EMD (
P
<0.05); the EMD uptakes of MWCNTs-EMD and HA-MWCNTs-EMD by the two types of breast cancer cells were significantly higher than their uptake of free EMD (
P
<0.05). Compared with the free EMD group, the MWCNTs-EMD and MWCNTs-EMD groups showed significantly higher apoptosis rate and LDH release, significantly lower surface
CD44 expression (except for the MWCNTs-EMD group) and cell viability in both cell types, and the effect of HA-MWCNTs-EMD was more pronounced (
P
<0.05).
CONCLUSIONS
2
A novel drug delivery system HA-MWCNTs-EMD loaded with EMD is developed successfully; the drug delivery system has a certain slow-release effect, which can significantly reduce the activity of breast cancer cells, promote their apoptosis and increase the release of LDH, and the above anti-breast cancer effect is significantly stronger than that of free EMD and MWCNTs-EMD.
THAKUR C , QIU Y R , PAWAR A , et al . Epigenetic regulation of breast cancer metastasis [J ] . Cancer Metastasis Rev , 2024 , 43 ( 2 ): 597 - 619 .
HIS M , GUNTER M J , KESKI-RAHKONEN P , et al . Application of metabolomics to epidemiologic studies of breast cancer:new perspectives for etiology and prevention [J ] . J Clin Oncol , 2024 , 42 ( 1 ): 103 - 115 .
WU Q H , YAN H K , KANG Z Y . A review of traditional Chinese medicine for triple negative breast cancer and the pharmacological mechanisms [J ] . Am J Chin Med , 2024 , 52 ( 4 ): 987 - 1011 .
WANG S Y , YANG S Y , YANG X J , et al . Research pro-gress of traditional Chinese medicine monomers in rever-sing multidrug resistance of breast cancer [J ] . Am J Chin Med , 2023 , 51 ( 3 ): 575 - 594 .
SAKALLI-TECIM E , UYAR-ARPACI P , GURAY N T . Identification of potential therapeutic genes and pathways in phytoestrogen emodin treated breast cancer cell lines via network biology approaches [J ] . Nutr Cancer , 2022 , 74 ( 2 ): 592 - 604 .
ŞEKER KARATOPRAK G , KÜPELI AKKOL E , YÜCEL Ç , et al . Advances in understanding the role of aloe emodin and targeted drug delivery systems in cancer [J ] . Oxid Med Cell Longev , 2022 , 2022 : 7928200 .
SRIVASTAVA N , MISHRA Y , MISHRA V , et al . Carbon nanotubes in breast cancer treatment:an insight into pro-perties,functionalization,and toxicity [J ] . Anticancer Agents Med Chem , 2023 , 23 ( 14 ): 1606 - 1617 .
NABAWI H M S , ABDELAZEM A Z , EL ROUBY W M A , et al . A potent formula against triple-negative breast cancer-sorafenib-carbon nanotubes-folic acid:targeting,apoptosis triggering,and bioavailability enhancing [J ] . Biotechnol Appl Biochem , 2025 , 72 ( 1 ): 86 - 103 .
KESHARWANI P , CHADAR R , SHEIKH A , et al . CD44-targeted nanocarrier for cancer therapy [J ] . Front Pharmacol , 2022 , 12 : 800481 .
LIU H , ZHUANG Y , WANG P P , et al . Polymeric lipid hybrid nanoparticles as a delivery system enhance the antitumor effect of emodin in vitro and in vivo [J ] . J Pharm Sci , 2021 , 110 ( 8 ): 2986 - 2996 .
CHENG G R , LIU Z Q , ZHENG Z , et al . Cell metabolomics reveals the potential mechanism of aloe emodin and emodin inhibiting breast cancer metastasis [J ] . Int J Mol Sci , 2022 , 23 ( 22 ): 13738 .
LOIBL S , ANDRÉ F , BACHELOT T , et al . Early breast cancer:ESMO clinical practice guideline for diagnosis,treatment and follow-up [J ] . Ann Oncol , 2024 , 35 ( 2 ): 159 - 182 .
YUAN J , LIU Y , ZHANG T T , et al . Traditional Chinese medicine for breast cancer treatment:a bibliometric and visualization analysis [J ] . Pharm Biol , 2024 , 62 ( 1 ): 499 - 512 .
MCDONALD S J , BULLARD B M , VANDERVEEN B N , et al . Emodin reduces surgical wounding-accelerated tumor growth and metastasis via macrophage suppression in a murine triple-negative breast cancer model [J ] . Physiol Rep , 2023 , 11 ( 19 ): e15813 .
GAYATHRI K , VIDYA R . Carbon nanomaterials as car-riers for the anti-cancer drug doxorubicin:a review on theoretical and experimental studies [J ] . Nanoscale Adv , 2024 , 6 ( 16 ): 3992 - 4014 .
MUMTAZ S M , BHARDWAJ G , GOSWAMI S , et al . Management of glioblastoma multiforme by phytoche-micals:applications of nanoparticle-based targeted drug delivery system [J ] . Curr Drug Targets , 2021 , 22 ( 4 ): 429 - 442 .
FU C P , CAI X Y , CHEN S L , et al . Hyaluronic acid-based nanocarriers for anticancer drug delivery [J ] . Polymers(Basel) , 2023 , 15 ( 10 ): 2317 .
KEARNS O , CAMISASCA A , GIORDANI S . Hyaluronic acid-conjugated carbon nanomaterials for enhanced tumour targeting ability [J ] . Molecules , 2021 , 27 ( 1 ): 48 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构