浏览全部资源
扫码关注微信
1.南方医科大学南方医院药学部,广州 510080
2.广州医科大学附属妇女儿童医疗中心药学部,广州 510623
硕士研究生。研究方向:中医药治疗高泌乳素血症的药理学研究。E-mail: 805114257@qq.com
主任药师,博士生导师,博士。研究方向:中医药防治内分泌代谢疾病的临床与药理学研究。E-mail: wangcx@smu.edu.cn
收稿日期:2025-03-11,
修回日期:2025-06-27,
录用日期:2025-05-28,
纸质出版日期:2025-07-15
移动端阅览
林冰淇,魏媛怡,易云等.基于肠道菌群和代谢组学技术研究芍药苷抗高泌乳素血症的作用机制 [J].中国药房,2025,36(13):1610-1616.
LIN Bingqi,WEI Yuanyi,YI Yun,et al.Mechanisms of paeoniflorin in treating hyperprolactinemia based on gut microbiota and metabolomics[J].ZHONGGUO YAOFANG,2025,36(13):1610-1616.
林冰淇,魏媛怡,易云等.基于肠道菌群和代谢组学技术研究芍药苷抗高泌乳素血症的作用机制 [J].中国药房,2025,36(13):1610-1616. DOI: 10.6039/j.issn.1001-0408.2025.13.10.
LIN Bingqi,WEI Yuanyi,YI Yun,et al.Mechanisms of paeoniflorin in treating hyperprolactinemia based on gut microbiota and metabolomics[J].ZHONGGUO YAOFANG,2025,36(13):1610-1616. DOI: 10.6039/j.issn.1001-0408.2025.13.10.
目的
2
探讨芍药苷抗高泌乳素血症(HPRL)的作用机制。
方法
2
将24只雌性SD大鼠分为空白对照组(灌胃5%阿拉伯胶溶液)、奥氮平组(模型组,灌胃5 mg/kg奥氮平混悬液)、芍药苷组(灌胃5 mg/kg奥氮平混悬液,2 h后再灌胃50 mg/kg芍药苷溶液),每组8只。每天1次,连续造模/给药至奥氮平组血浆泌乳素(PRL)水平高于空白对照组2倍。末次给药后,检测各组大鼠的血浆PRL水平,分析其肠道菌群变化[包括α多样性(Simpson、Chao1、Shannon指数)、β多样性和物种组成(门/属水平)分析、微生物组学LEfSe分析];进行粪便非靶向代谢组学技术分析(包括多元统计分析、差异代谢物筛选及通路富集分析);采用Spearman相关分析探究差异菌群与粪便差异代谢物的相关性。
结果
2
与奥氮平组比较,芍药苷组大鼠血浆PRL水平显著降低(
P
<0.05)。16S rRNA高通量测序结果显示,芍药苷可显著改善HPRL大鼠肠道菌群的α多样性和β多样(
P
<0.05),使其趋向于空白对照组。在门水平上,芍药苷可显著降低HPRL大鼠厚壁菌门、脱硫菌门的相对丰度,显著升高疣微菌门的相对丰度(
P
<0.05);在属水平上,芍药苷可显著逆转HPRL大鼠脱硫弧菌属、异杆菌属、普雷沃氏菌属NK3B31组等相对丰度的变化(
P
<0.05)。LEfSe分析结果显示,芍药苷可显著富集放线菌门、葡萄球菌目、棒状杆菌目等菌群(
P
<0.05)。共筛选出51个差异代谢物,代谢产物显著聚集于类固醇激素生物合成、前列腺癌、卵巢类固醇生成等代谢通路。相关性分析显示,肠道差异菌属如脱硫弧菌属、气球菌属等的相对丰度与四氢皮质醇、肾上腺甾酮等类固醇激素代谢物含量显著相关(
P
<0.05)。
结论
2
芍药苷可能通过调节HPRL大鼠肠道菌群结构(包括显著降低脱硫弧菌属、异杆菌属
、
气球菌属的相对丰度,显著上调瘤胃球菌科UBA1819组
、
鼠肠杆菌属的相对丰度)、调控类固醇激素生物合成代谢通路来降低PRL水平,从而发挥抗HPRL的作用。
OBJECTIVE
2
To investigate the mechanisms of paeoniflorin (PF) in anti-hyperprolactinemia (HPRL).
METHODS
2
Twenty-four female SD rats were divided into blank control group (intragastric administration of 5% gum arabic solution), olanzapine group (model group, intragastric administration of 5 mg/kg olanzapine suspension), and PF group (intragastric administration of 5 mg/kg olanzapine suspension, followed by gavaging with 50 mg/kg PF solution 2 hours later) with 8 rats in each group. Once a day, continuously model/administer until the plasma prolactin (PRL) levels in the olanzapine group were twice as high as those in the blank control group. PRL levels were measured. The changes in gut microbiota of rats were analyzed, including assessments of α-diversity (Simpson, Chao1, and Shannon indexes), β-diversity, species composition analysis (at the phylum and genus levels), and microbiome LEfSe analysis. Fecal untargeted metabolomics technology was employed to analyze the effects of PF on the fecal metabolomics of rats, including multivariate statistical analysis, screening of differential metabolites, and pathway enrichment analysis. Spearman correlation analysis was performed to examine the correlations between differential microbiota and differential fecal metabolites.
RESULTS
2
PF significantly reduced serum PRL levels of rats in olanzapine group (
P
<0.05). 16S rRNA sequencing revealed that PF improved the α-diversity and β-diversity of gut microbiota in HPRL rats (
P
<0.05), restoring them to levels similar to the blank control group. At the phylum level, PF significantly reduced the relative abundance of Firmicutes and Desulfobacterota, while increasing the
relative abundance of Verrucomicrobiota in HPRL rats (all
P
<0.05). At the genus level, PF reversed the relative abundance of
Desulfovibrio
,
Allobaculum
, and
Prevotellaceae_NK3B31_group
, etc (all
P
<0.05). The results of LEfSe analysis revealed that PF significantly enriched microbial taxa such as Actinobacteriota, Staphylococcales, Corynebacteriales, etc
(all
P
<0.05). Metabolomics analysis identified 51 differential metabolites, with key metabolic pathways enriched in steroid hormone biosynthesis, prostate cancer, ovarian steroidogenesis, etc. Correlation analysis showed that the relative abundance of gut microbiota such as
Desulfovibrio
and
Aerococcus
was significantly correlated with the levels of steroid hormone metabolites such as tetrahydrocortisol and adrenosterone (
P
<0.05).
CONCLUSIONS
2
PF alleviates PRL by modulating gut microbiota structure in HPRL rats (including significantly reducing the relative abundance of
Desulfovibrio
,
Allobaculum
and
Aerococcus
, as well as significantly increasing the relative abundance of
Ruminococcaceae_UBA1819
and
Muribaculum
), and regulating steroid hormone pathways, then exerting its anti-HPRL effect.
JUNQUEIRA D R , BENNETT D , HUH S Y , et al . Clinical presentations of drug-induced hyperprolactinaemia:a literature review [J ] . Pharmaceut Med , 2023 , 37 ( 2 ): 153 - 166 .
BERNARD V , YOUNG J , BINART N . Prolactin:a pleiotropic factor in health and disease [J ] . Nat Rev Endocrinol , 2019 , 15 ( 6 ): 356 - 365 .
VASILEV V , DALY A F , VROONEN L , et al . Resistant prolactinomas [J ] . J Endocrinol Invest , 2011 , 34 ( 4 ): 312 - 316 .
王春霞 , 潘斌 , 刘静 , 等 . 抑乳调经颗粒治疗肾虚肝郁型高泌乳素血症的临床疗效观察 [J ] . 中国药房 , 2009 , 20 ( 18 ): 1421 - 1423 .
WANG Z B , ZHENG Y S , FAN Y L , et al . Peony-glycyrrhiza decoction for antipsychotic-related hyperprolactinemia in patients with schizophrenia:a randomized controlled trial [J ] . Neuropsychiatr Dis Treat , 2023 , 19 : 929 - 938 .
WEI Y Y , LA L , WANG L L , et al . Paeoniflorin and liquiritin,two major constituents in Chinese herbal formulas used to treat hyperprolactinemia-associated disorders,inhibits prolactin secretion in prolactinoma cells by dif- ferent mechanisms [J ] . J Ethnopharmacol , 2017 , 204 : 36 - 44 .
RONG B H , XIA T Y , ZHANG T T , et al . Gut microbiota:a potential manipulator for host adipose tissue and energy metabolism [J ] . J Nutr Biochem , 2019 , 64 : 206 - 217 .
QIAN L , HE X Y , LIU Y X , et al . Longitudinal gut microbiota dysbiosis underlies olanzapine-induced weight gain [J ] . Microbiol Spectr , 2023 , 11 ( 4 ): e0005823 .
LUO S , WEN R Y , WANG Q , et al . Rhubarb peony decoction ameliorates ulcerative colitis in mice by regulating gut microbiota to restoring Th17/Treg balance [J ] . J Ethnopharmacol , 2019 , 231 : 39 - 49 .
HUANG X Q , REN L Y , HOU L B , et al . Paeoniflorin ameliorates antipsychotic-induced hyperprolactinemia in rats by attenuating impairment of the dopamine D2 receptor and TGF-β 1 signaling pathways in the hypothalamus and pituitary [J ] . J Ethnopharmacol , 2020 , 257 : 112862 .
SEGATA N , IZARD J , WALDRON L , et al . Metagenomic biomarker discovery and explanation [J ] . Genome Biol , 2011 , 12 ( 6 ): R60 .
WIKLUND S , JOHANSSON E , SJöSTRöM L , et al . Visua- lization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models [J ] . Anal Chem , 2008 , 80 ( 1 ): 115 - 122 .
TRYGG J , WOLD S . Orthogonal projections to latent structures (OPLS) [J ] . J Chemom , 2002 , 16 ( 3 ): 119 - 128 .
TREMAROLI V , BäCKHED F . Functional interactions between the gut microbiota and host metabolism [J ] . Nature , 2012 , 489 ( 7415 ): 242 - 249 .
NICHOLSON J K , HOLMES E , KINROSS J , et al . Host-gut microbiota metabolic interactions [J ] . Science , 2012 , 336 ( 6086 ): 1262 - 1267 .
ROOKS M G , GARRETT W S . Gut microbiota,metabolites and host immunity [J ] . Nat Rev Immunol , 2016 , 16 ( 6 ): 341 - 352 .
REN S , WANG Y G , ZHANG Y Y , et al . Paeoniflorin alleviates Ang Ⅱ-induced cardiac hypertrophy in H9c2 cells by regulating oxidative stress and Nrf2 signaling pathway [J ] . Biomed Pharmacother , 2023 , 165 : 115253 .
ZHANG L L , WEI W . Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony [J ] . Pharmacol Ther , 2020 , 207 : 107452 .
BEN-JONATHAN N , CHEN S L , DUNCKLEY J A , et al . Estrogen receptor-alpha mediates the epidermal growth factor-stimulated prolactin expression and release in lactotrophs [J ] . Endocrinology , 2009 , 150 ( 2 ): 795 - 802 .
CAMILLETTI M A , FERRARIS J , ABELEDO-MACHADO A , et al . Participation of membrane progesterone receptor α in the inhibitory effect of progesterone on prolactin secretion [J ] . J Neuroendocrinol , 2018 , 30 ( 9 ): e12614 .
SPANGLER P R , DELIDOW B C . Co-regulation of pitui- tary tumor cell adhesion and prolactin gene expression by glucocorticoid [J ] . J Cell Physiol , 1998 , 174 ( 1 ): 115 - 124 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构