浏览全部资源
扫码关注微信
1.南京中医药大学附属医院药学部,南京 210029
2.中国药科大学中药学院,南京 211198
副主任中药师,博士。研究方向:中药制剂与分析。E-mail:xiaoleiyaoshi@163.com
主任中药师,博士。研究方向:中药制剂与分析。 E-mail:yfy0093@njucm.edu.cn
纸质出版日期:2023-01-15,
收稿日期:2022-07-13,
修回日期:2022-12-02,
扫 描 看 全 文
吴磊,刘玉平,陆超等.不同煎煮时间下六味地黄方粉末饮片与传统饮片的指纹图谱和多成分含量比较 Δ[J].中国药房,2023,34(01):67-71.
WU Lei,LIU Yuping,LU Chao,et al.Comparison of the fingerprint and multi-component contents between Liuwei dihuang powder decoction pieces and traditional decoction pieces with different decocting time[J].ZHONGGUO YAOFANG,2023,34(01):67-71.
吴磊,刘玉平,陆超等.不同煎煮时间下六味地黄方粉末饮片与传统饮片的指纹图谱和多成分含量比较 Δ[J].中国药房,2023,34(01):67-71. DOI: 10.6039/j.issn.1001-0408.2023.01.13.
WU Lei,LIU Yuping,LU Chao,et al.Comparison of the fingerprint and multi-component contents between Liuwei dihuang powder decoction pieces and traditional decoction pieces with different decocting time[J].ZHONGGUO YAOFANG,2023,34(01):67-71. DOI: 10.6039/j.issn.1001-0408.2023.01.13.
目的
2
比较六味地黄方粉末饮片与传统饮片(后文称为“粉末饮片”和“传统饮片”)提取过程中多成分的变化规律,为六味地黄方的现代工艺研究提供科学依据。
方法
2
以粉末饮片和传统饮片为样品,分别在浸泡60 min时,头煎0、5、10 、15 、20 、25、30、40 、50、60 min时和二煎5、10、20、30、40 min时取样。采用高效液相色谱法建立不同煎煮时间下2种饮片的指纹图谱,进行相似度评价和色谱峰的指认,并测定其中5-羟基糠醛、儿茶素、莫诺苷、马钱苷、獐芽菜苷、二氢槲皮素、丹皮酚和苯甲酰芍药苷8个指标成分的含量。
结果
2
不同煎煮时间下,2种饮片与各自对照指纹图谱R的相似度均大于0.98。在传统饮片指纹图谱中,共指认出5个色谱峰,分别为5-羟基糠醛、莫诺苷、獐芽菜苷、二氢槲皮素、丹皮酚;在粉末饮片指纹图谱中,共指认出6个色谱峰,分别为5-羟基糠醛、莫诺苷、獐芽菜苷、二氢槲皮素、丹皮酚、苯甲酰芍药苷。含量测定结果显示,在头煎过程中,前5 min内粉末饮片中几乎所有成分的煎出速率均较传统饮片快; 40 min后,除5-羟基糠醛和丹皮酚外,其余活性成分的含量均低于传统饮片。在二煎过程中,除丹皮酚和马钱苷外,其余成分的含量均是粉末饮片高于传统饮片;传统饮片中儿茶素在头煎中被完全煎出,而粉末饮片中儿茶素在二煎中依然可被检测到。2种饮片中8种成分的总煎出量差异不大。
结论
2
六味地黄方粉末饮片化学成分与传统饮片相比无明显优势,无法节省煎煮时间和药材用量。
OBJECTIVE
2
To compare the change law of multi-components in the extraction process between Liuwei dihuang powder decoction pieces and traditional decoction pieces (hereinafter referred to as powder decoction pieces and traditional decoction pieces), and to provide scientific basis for the modern technology research of Liuwei dihuang formula.
METHODS
2
Taking powder decoction pieces and traditional decoction pieces as samples, the samples were taken when soaking for 60 min, at 0, 5, 10, 15, 20, 25, 30, 40, 50, 60 min of the first decocting and at 5, 10, 20, 30, 40 min of the second decocting, respectively. HPLC method was used to establish the fingerprints of 2 kinds of decoction pieces with different decocting time. The similarity evaluation and peak identification were performed. The contents of 8 components including 5-hydroxyfurfural, catechin, monoglycoside, loganin, swertin glycoside, dihydroquercetin, paeonol and benzoyl paeoniflorin were all determined.
RESULTS
2
With different decocting time, the similarties between 2 kinds of decoction pieces and their respective control fingerprints R were all greater than 0.98. In the fingerprints of traditional decoction pieces, five chromatographic peaks were identified, namely, 5-hydroxyfurfural, monetin, swertiaoside, dihydroquercetin and paeonol; in the fingerprints of powder decoction pieces, six chromatographic peaks were identified, namely, 5-hydroxyfurfural, monoglycoside, swertiamarin, dihydroquercetin, paeonol and benzoyl paeoniflorin. The results of content determination showed that in the first 5 minutes of the first decocting, the decocting rate of almost all the ingredients in the powder decoction pieces was faster than that of the traditional decoction pieces; after 40 min, the contents of other active ingredients were lower than those of traditional decoction pieces except for 5-hydroxyfurfural and paeonol. In the process of second decocting, except for paeonol and loganin, the contents of other ingredients in powder decoction pieces were higher than that in traditional decoction pieces; catechin was completely decocted from the traditional decoction pieces in the first decocting, while it could still be detected in the powder decoction pieces in the second decocting. There was little difference in the total decocted amount of the 8 ingredients in the two decoction pieces.
CONCLUSIONS
2
The chemical composition of powder decoction pieces of Liuwei dihuang formula has no obvious advantages compared with traditional decoction pieces, and can not save the decocting time and the amount of medicinal materials.
六味地黄方粉末饮片传统饮片提取过程指纹图谱含量测定
powder decoction piecestraditional decoction piecesextraction processfingerprintcontent determination
董力嘉,傅舒.中药配方颗粒现状研究[J].中药与临床,2021,12(4):85-89.
李巾,彭艳梅,陈娟,等.精制中药饮片酒白芍炮制工艺研究[J].实用中西医结合临床,2019,19(11):175-177.
成金乐,郑夏生,杨泽锐,等.中药饮片粉末的历史与应用[J].世界科学技术-中医药现代化,2016,18(9):1539-1545.
程雪娇,李涛,莫雪林,等.中药粉末饮片的传承与现代化发展概况及产业发展建议[J].中国药房,2017,28(31):4321-4325.
陈士林,刘安,李琦,等.中药饮片标准汤剂研究策略[J].中国中药杂志,2016,41(8):1367-1375.
刘芳,傅超美,李小红,等.中药粉末饮片的研究与应用进展分析[J].中国实验方剂学杂志,2016,22(2):222-225.
高佳莺,钱婉燕,张婕伃.我院六味地黄丸及其类方成药临床应用情况分析[J].上海医药,2022,43(15):20-22,69.
傅紫琴,王明艳,蔡宝昌. 5-羟甲基糠醛(5-HMF)在中药中的研究现状探讨[J].中华中医药学刊,2008,26(3):508-510.
张树蓉,赵宏苏,佟沫儒,等.牡丹皮化学成分、药理作用及其质量标志物(Q-Marker)的预测分析[J].中草药,2022,53(16):5215-5224.
柳洋,王丽.山茱萸治疗糖尿病肾病研究概况[J].中医药临床杂志,2022,34(9):1778-1782.
李美丹,姚兰,梁群卿,等.基于网络药理学的防己茯苓汤治疗急性肾损伤机制研究[J].中国中医基础医学杂志,2020,26(9):1371-1377,1422.
张颖,江玲丽. HPLC测定不同产地茯苓中的茯苓酸含量[J].通化师范学院学报,2014,35(4):42-44.
邢晓玲.浅析超微粉碎技术及其在中药制药中的应用优势[J].世界最新医学信息文摘,2019,19(1):179,181.
吴磊,陆超.中药金莲花质量标准的建立与优化[J].生物加工过程,2022,20(5):552-557.
何红.丹皮酚分散片制备工艺试验研究[D].南昌:南昌大学,2017.
雷志伟,李露露,郭灿,等.儿茶素糖基化修饰研究进展[J].中草药,2019,50(21):5362-5372.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构