浏览全部资源
扫码关注微信
1.广州中医药大学第一临床医学院,广州 510405
2.宁夏回族自治区中医医院暨中医研究院,银川 750021
3.香港中文大学组织工程与再生医学研究所,香港 999077
4.广州中医药大学第一附属医院一骨科,广州 510405
硕士研究生。研究方向:中医药防治骨与关节损伤。E-mail:1315492593@qq.com
主任中医师,教授,博士。研究方向:中医药防治骨与关节损伤。E-mail:ainemylyy@163.com
纸质出版日期:2023-04-15,
收稿日期:2022-10-27,
修回日期:2022-11-26,
扫 描 看 全 文
汤胜尧,胡珉华,周若愚等.木犀草素对骨缺损成骨修复的作用及机制研究 Δ[J].中国药房,2023,34(07):807-813.
TANG Shengyao,HU Minhua,ZHOU Ruoyu,et al.Study on the effects and mechanism of luteolin on osteogenic repair of bone defects[J].ZHONGGUO YAOFANG,2023,34(07):807-813.
汤胜尧,胡珉华,周若愚等.木犀草素对骨缺损成骨修复的作用及机制研究 Δ[J].中国药房,2023,34(07):807-813. DOI: 10.6039/j.issn.1001-0408.2023.07.08.
TANG Shengyao,HU Minhua,ZHOU Ruoyu,et al.Study on the effects and mechanism of luteolin on osteogenic repair of bone defects[J].ZHONGGUO YAOFANG,2023,34(07):807-813. DOI: 10.6039/j.issn.1001-0408.2023.07.08.
目的
2
探讨木犀草素对骨缺损成骨修复的作用及机制。
方法
2
通过网络药理学方法筛选木犀草素治疗骨缺损的作用靶点及潜在通路,利用Hub基因筛选排名前2位的靶点进行分子对接验证,以结合能作为评判标准。对大鼠骨髓间充质干细胞(BMSC)及脐静脉内皮细胞(RUVEC)进行体外实验,采用碱性磷酸酶染色、茜素红S染色、体外血管形成实验进行表型验证,采用Western blot法检测磷脂酰肌醇3激酶(PI3K)、蛋白激酶B1(Akt1)蛋白的表达情况,以验证木犀草素对BMSC成骨分化及RUVEC体外血管形成的作用机制。
结果
2
网络药理学结果显示,木犀草素对骨缺损的血管形成和骨修复作用主要与Akt1、SRC蛋白、雌激素受体1、表皮生长因子受体、环加氧酶2、基质金属蛋白酶9靶点有关,且与PI3K/Akt信号通路关系密切。分子对接结果显示,木犀草素与Akt1、SRC蛋白结合稳定。体外实验结果表明,木犀草素能显著增高BMSC内碱性磷酸酶的表达水平和活性,增加钙盐沉积和钙化结节的数量,促进BMSC的钙化;与木犀草素0 μmol/L组比较,木犀草素1、10 μmol/L组的RUVEC血管形成能力显著增强、血管长度显著增加,PI3K、Akt1的蛋白表达水平显著提高(
P
<0.05或
P
<0.01),且浓度越高效果越好。
结论
2
木犀草素可能通过激活PI3K/Akt信号通路,促进PI3K、Akt1蛋白的表达来发挥增强骨折端的血管形成及骨修复的功能。
OBJECTIVE
2
To investigate the effects and mechanism of luteolin on osteogenic repair of bone defects.
METHODS
2
The targets and potential pathways of luteolin in the treatment of bone defects were screened by network pharmacology method, and then the top 2 targets were selected by Hub gene screening for molecular docking verification, with binding energy as the evaluation standard.
In vitro
experiments were conducted on rat bone mesenchymal stem cells (BMSC) and rat umbilical vein endothelial cells (RUVEC). Phenotypic validation was performed using alkaline phosphatase staining, alizarin red S staining, and
in vitro
angiogenesis experiments. Western blot assay was used to detect the protein expressions of phosphatidylinositol 3 kinase (PI3K) and protein kinase 1 (Akt1), so as to validate the mechanism of luteolin on osteogenic differentiation of BMSC and angiogenesis of RUVEC
in vitro
.
RESULTS
2
The results of network pharmacology showed that the effects of luteolin on vascular formation and bone repair in bone defects were mainly related to Akt1, SRC, estrogen receptor 1, epidermal growth factor receptor, cyclooxygenase 2, matrix metalloproteinase 9 targets, and were closely related to PI3K-Akt signaling pathway. The results of molecular docking showed that luteolin binding to Akt1 and SRC proteins was stable. The results of
in vitro
experiments showed that luteolin could significantly improve the expressions and activities of alkaline phosphatase in BMSC, increased the number of calcium salt deposits and calcified nodules, and promoted calcification of BMSC. Compared with luteolin 0 μmol/L group, the angiogenesis ability of RUVEC was enhanced significantly in luteolin 1, 10 μmol/L groups, the length of blood vessels and the protein expressions of PI3K and Akt1 were significantly increased (
P
<0.05 or
P
<0.01); the higher the concentration, the better the effect.
CONCLUSIONS
2
Luteolin may play a role in promoting angiogenesis and bone repair at the fracture site by activating PI3K/Akt signaling pathway and promoting the protein expressions of PI3K and Akt1.
木犀草素骨缺损成骨修复血管形成网络药理学分子对接
bone defectosteogenic repairangiogenesisnetwork pharmacologymolecular docking
ALMUBARAK S,NETHERCOTT H,FREEBERG M, et al. Tissue engineering strategies for promoting vascularized bone regeneration[J]. Bone,2016,83:197-209.
王海波,杨新明,张瑛,等. 大段骨缺损修复的组织工程学研究进展[J]. 中华生物医学工程杂志,2013,19(1):73-76.
MA Y H,GU S J,YIN Q D,et al. Application of multiple wrapped cancellous bone graft methods for treatment of segmental bone defects[J]. BMC Musculoskelet Disord,2019,20(1):346.
HAUGEN H J,LYNGSTADAAS S P,ROSSI F,et al. Bone grafts:which is the ideal biomaterial[J]. J Clin Periodontol,2019,46(Suppl 21):92-102.
曾展鹏,周驰,李康活,等. 补肾接骨中药对骨折修复的成骨作用及机制[J]. 中国组织工程研究,2015,19(15):2442-2448.
尹朝献,刘安平,曹日隆. 中药促进骨折愈合机制的实验研究进展[J]. 中医药临床杂志,2007,19(6):640-642.
李宝锋. 基于肾主骨生髓理论的补肾生髓法促进骨折愈合的文献与临床研究[D]. 济南:山东中医药大学,2013.
王庆丰,王孝辉,张彩丽,等. 骨碎补总黄酮促进大鼠诱导膜中VEGF、BMP-2表达的实验研究[J]. 药物评价研究,2018,41(7):1220-1223.
尹文哲,徐展望,王利,等. 骨碎补总黄酮对模拟失重下共育骨细胞中ALP活性及BMP-2和OPG基因表达影响[J]. 中药材,2012,35(3):452-455.
沈智,曾景奇,李益亮,等. 骨碎补总黄酮对悬尾实验性骨质疏松模型大鼠骨密度及BMP-2 mRNA的影响[J]. 中医药导报,2019,25(21):33-36.
申震,姜自伟,李定,等. 基于牵张成骨技术比较两种补肾法在成血管-成骨耦联机制中的作用差异[J]. 中华中医药杂志,2019,34(5):2150-2155.
LIN H X,WANG X T,LI Z G,et al. Total flavonoids of Rhizoma Drynariae promote angiogenesis and osteoge- nesis in bone defects[J]. Phytother Res,2022,36(9):3584-3600.
HU W H,WANG H Y,XIA Y T,et al. Kaempferol,a major flavonoid in Ginkgo folium,potentiates angiogenic functions in cultured endothelial cells by binding to vascular endothelial growth factor[J]. Front Pharmacol,2020,11:526.
ZHAO Z H,MA X L,MA J X,et al. Naringin enhances endothelial progenitor cell (EPC) proliferation and tube formation capacity through the CXCL12/CXCR4/PI3K/Akt signaling pathway[J]. Chem Biol Interact,2018,286:45-51.
QUAN H,DAI X P,LIU M Y,et al. Luteolin supports osteogenic differentiation of human periodontal ligament cells[J]. BMC Oral Health,2019,19(1):229.
LIN H X,WANG X T,WANG L G,et al. Identified the synergistic mechanism of Drynariae Rhizoma for treating fracture based on network pharmacology[J]. Evid Based Complement Alternat Med,2019,2019:7342635.
GURTNER G C,WERNER S,BARRANDON Y,et al. Wound repair and regeneration[J]. Nature,2008,453(7193):314-321.
BRANDI M L,COLLIN-OSDOBY P. Vascular biology and the skeleton[J]. J Bone Miner Res,2006,21(2):183-192.
LIU J,ZHAO X D,PEI D D,et al. The promotion function of berberine for osteogenic differentiation of human periodontal ligament stem cells via ERK-FOS pathway mediated by EGFR[J]. Sci Rep,2018,8(1):2848.
YANG C,LIU X H,ZHAO K,et al. miRNA-21 promotes osteogenesis via the PTEN/PI3K/Akt/HIF-1α pathway and enhances bone regeneration in critical size defects[J]. Stem Cell Res Ther,2019,10(1):65.
HU K. The roles of vascular endothelial growth factor in bone repair and regeneration[J]. Bone,2016,91:30-38.
XIAO Y P,ZENG J,JIAO L N,et al. Review for treatment effect and signaling pathway regulation of kidney-tonifying traditional Chinese medicine on osteoporosis[J]. China J Chin Mater Med,2018,43(1):21-30.
LEE C H,HUANG Y L,LIAO J F,et al. Ugonin K-stimulated osteogenesis involves estrogen receptor-dependent activation of non-classical Src signaling pathway and classical pathway[J]. Eur J Pharmacol,2012,676(1/2/3):26-33.
MUÑOZ-CHÁPULI R,QUESADA A R,ÁNGEL MEDINA M. Angiogenesis and signal transduction in endothelial cells[J].Cell Mol Life Sci,2004,61(17):2224-2243.
DAVIS G E,SENGER D R. Endothelial extracellular matrix:biosynthesis,remodeling,and functions during vascular morphogenesis and neovessel stabilization[J]. Circ Res,2005,97(11):1093-1107.
ZHANG Y C,SUN Y,LIU J L,et al. MicroRNA-346-5p regulates differentiation of bone marrow-derived mesenchymal stem cells by inhibiting transmembrane protein 9[J]. Biomed Res Int,2020,2020:8822232.
0
浏览量
6
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构