浏览全部资源
扫码关注微信
1.江苏省徐州医药高等职业学校药学技术系,江苏 徐州 221116
2.辽宁中医药大学附属第二医院药理室,沈阳 110034
3.江苏护理职业学院药学与中药学院,江苏 淮安 223200
教授,博士。研究方向:中药新药药理、神经药理学。E-mail:lnzyxyqy2003@163.com
教授。研究方向:中药新药药理、神经药理学。E-mail:Jiadg2003@126.com
纸质出版日期:2023-07-30,
收稿日期:2022-12-27,
修回日期:2023-05-18,
扫 描 看 全 文
齐越,贾冬,张艳军等.癫痫清颗粒介导线粒体自噬对P301S小鼠tau蛋白的影响 Δ[J].中国药房,2023,34(14):1712-1718.
QI Yue,JIA Dong,ZHANG Yanjun,et al.Effects of Dianxianqing granules on tau protein in P301S mice by regulating mitophagy[J].ZHONGGUO YAOFANG,2023,34(14):1712-1718.
齐越,贾冬,张艳军等.癫痫清颗粒介导线粒体自噬对P301S小鼠tau蛋白的影响 Δ[J].中国药房,2023,34(14):1712-1718. DOI: 10.6039/j.issn.1001-0408.2023.14.10.
QI Yue,JIA Dong,ZHANG Yanjun,et al.Effects of Dianxianqing granules on tau protein in P301S mice by regulating mitophagy[J].ZHONGGUO YAOFANG,2023,34(14):1712-1718. DOI: 10.6039/j.issn.1001-0408.2023.14.10.
目的
2
研究癫痫清颗粒介导线粒体自噬对P301S小鼠tau蛋白的影响。
方法
2
将36只P301S小鼠按体重分为模型组、癫痫清颗粒组(12.48 g/kg)和盐酸多奈哌齐组(阳性对照,1.3 mg/kg),每组12只;另取C57BL6小鼠10只,作为对照组。各药物组小鼠灌胃相应药液,对照组和模型组灌胃等体积水;灌胃体积均为20 mL/kg,每天1次,连续5个月。实验期间,观察各组小鼠的一般状况;末次给药后,借助Y迷宫和Morris水迷宫实验检测小鼠的学习记忆能力;以苏木精-伊红染色法观察其脑组织形态学改变,以尼氏染色法观察其脑组织神经细胞结构和尼氏体数量;以免疫组织化学法检测其脑组织中丝氨酸202/苏氨酸205位点磷酸化tau(简称“AT8”)蛋白的表达水平,Western blot法检测脑组织中线粒体自噬相关蛋白[PTEN诱导激酶1(PINK1)、Parkin、微管相关蛋白1轻链3B(LC3B)、p62]、突触相关蛋白[突触后密度蛋白95(PSD-95)、突触生长蛋白(SYP)、生长相关蛋白43(GAP-43)]的表达水平和tau蛋白的磷酸化水平[以丝氨酸199(Ser199)、Ser202的磷酸化水平表示]。
结果
2
模型组小鼠出现毛发变白、体重下降、下肢瘫痪等症状;其脑组织海马结构欠完整,神经细胞膜及细胞结构亦不完整;其自发交替反应率、穿越平台次数、细胞质内尼氏体数量和PINK1、Parkin、LC3B、SYP、GAP-43、PSD-95蛋白的表达水平均较对照组显著降低,游泳潜伏期(第4、5天)、AT8和p62蛋白的表达水平、Ser199和Ser202蛋白的磷酸化水平均较对照组显著升高或延长(
P
<0.05或
P
<0.01)。与模型组比较,各药物组小鼠上述症状和指标均得以显著改善(
P
<0.05或
P
<0.01)。
结论
2
癫痫清颗粒可有效改善P301S小鼠的认知功能障碍,作用可能与介导线粒体自噬,减少tau蛋白过度磷酸化,上调脑组织中突触相关蛋白的表达,修复受损神经细胞有关。
OBJECTIVE
2
To study the effects of Dianxianqing granules on the tau protein in P301S mice by regulating mitophagy.
METHODS
2
Totally 36 P301S mice were randomly divided into model group, Dianxianqing granule group (12.48 g/kg), donepezil hydrochloride group (positive control, 1.3 mg/kg), with 12 mice in each group; another 10 C57BL6 mice were selected as control group. Administration groups were given relevant drug solutions intragastrically, and control group and model group were given constant volume of water intragastrically. The gavage volume was 20 mL/kg, once a day, for consecutive 5 months. During the experiment, the general condition of mice was observed in each group. After the last medication, the learning and memory ability was determined by Y maze test and Morris water maze test; HE staining was used to observe the morphological changes in brain tissue, and Nissl staining was used to observe the structure of neural cells and the number of Nissl bodies in cerebral tissue. Immunohistochemistry was used to detect the expressions of phospho-tau serine 202/threonine 205 (abbreviated as AT8) in brain tissue. Western blot assay was used to determine the expressions of mitophagy-associated proteins [PTEN-induced putative kinase-1 (PINK1), Parkin, microtubule-associated protein 1 light chain 3B (LC3B), p62], synaptic-associated proteins [postsynaptic density protein-95 (PSD-95), synaptophysin (SYP), and growth-associated protein-43 (GAP-43)] and the phosphorylation of tau protein [expressed by the phosphorylation levels of serine 199 (Ser199) and Ser202] in brain tissue.
RESULTS
2
The mice in model group showed symptoms such as white hair, decreased body mass, and lower limb paralysis, with incomplete hippocampal structures in their brain tissue, as well as incomplete cell membrane edges and cell structures; the spontaneous alternating response rate, the times of crossing platform, the number of Nissl bodies, the protein expressions of PINK1, Parkin, LC3B, SYP, GAP-43, and PSD-95 were decreased significantly, compared with control group; swimming latency (fourth and fifth day), the protein expressions of AT8 and p62,the phosphorylation levels of Ser199 and Ser202 were increased or lengthened significantly, compared with control group (
P
<0.05 or
P
<0.01). Compared with model group, the above symptoms and indexes of mice were improved significantly in administration groups (
P
<0.05 or
P
<0.01).
CONCLUSIONS
2
Dianxianqing granules can effectively improve cognitive impairment in P301S mice,the mechanism of which may be associated with inducing mitochondrial autophagy, reducing the hyperphosphorylation of tau protein, up-regulating the expression of synaptic-associated proteins in brain tissue,and repairing damaged neural cells.
癫痫清颗粒阿尔茨海默病线粒体自噬tau蛋白突触神经细胞学习记忆障碍
Alzheimer’s diseasemitophagytau proteinsynapseneural cellslearning and memory disorders
REDDY P H,YIN X L,MANCZAK M,et al. Mutant APP and amyloid beta-induced defective autophagy,mitophagy,mitochondrial structural and functional changes and synaptic damage in hippocampal neurons from Alzheimer’s disease[J]. Hum Mol Genet,2018,27(14):2502-2516.
WANG J N,ZHU S F,LU W P,et al. Varenicline improved laparotomy-induced cognitive impairment by restoring mitophagy in aged mice[J]. Eur J Pharmacol,2022,916:174524.
MORTON H,KSHIRSAGAR S,ORLOV E,et al. Defective mitophagy and synaptic degeneration in Alzheimer’s disease:focus on aging,mitochondria and synapse[J]. Free Radic Biol Med,2021,172:652-667.
KERR J S,ADRIAANSE B A,GREIG N H,et al. Mitophagy and Alzheimer’s disease:cellular and molecular mechanisms[J]. Trends Neurosci,2017,40(3):151-166.
FANG E F,HOU Y J,PALIKARAS K,et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease[J]. Nat Neurosci,2019,22(3):401-412.
张晨曦,董承瑜,胡鑫,等. 中药治疗阿尔茨海默病分子作用机制的研究进展[J]. 中草药,2022,53(13):4132-4145.
康凯. 癫痫清颗粒对阿尔茨海默病模型小鼠Tau蛋白磷酸化及Aβ产生的影响[D]. 沈阳:辽宁中医药大学,2017.
KSHIRSAGAR S,SAWANT N,MORTON H,et al. Mitophagy enhancers against phosphorylated tau-induced mitochondrial and synaptic toxicities in Alzheimer disease[J]. Pharmacol Res,2021,174:105973.
齐越,贾冬,张筠,等. 癫痫清颗粒对海人藻酸致痫大鼠海马内氧化应激及MAPK信号通路的影响[J]. 中国现代医生,2021,59(26):40-44.
齐越,李昭,侯侠,等. 癫痫清颗粒改善AD模型小鼠血脑屏障损伤的作用研究[J]. 中国药房,2022,33(9):1062-1067.
LIU H Q,AN N,WANG L Q,et al. Protective effect of Xingnaojing injection on ferroptosis after cerebral ische-mia injury in MCAO rats and SH-SY5Y cells[J]. J Ethnopharmacol,2023,301:115836.
KIM M S,MUN Y S,LEE S E,et al. Tau acetylation at K280 regulates tau phosphorylation[J]. Int J Neurosci,2022:1-5.
OSSENKOPPELE R,VAN DER KANT R,HANSSON O. Tau biomarkers in Alzheimer’s disease:towards implementation in clinical practice and trials[J]. Lancet Neurol,2022,21(8):726-734.
TUCKER A E,ALICEA PAUNETO C D M,BARNETT A M,et al. Chronic ethanol causes persistent increases in Alzheimer’s tau pathology in female 3xTg-AD mice:a potential role for lysosomal impairment[J]. Front Behav Neurosci,2022,16:886634.
WANG S T,ZHANG K L,YAO Y C,et al. Autophagy and mitochondrial homeostasis during infection:a double-edged sword[J]. Front Cell Dev Biol,2021,9:738932.
张林,方德宇,柳春,等. 基于蛋白质组学研究葛根素逆转Aβ1-42损伤SH-SY5Y细胞的机制[J]. 中国中药杂志,2021,46(14):3650-3659.
LI J,YANG D M,LI Z P,et al. PINK1/parkin-mediated mitophagy in neurodegenerative diseases[J]. Ageing Res Rev,2023,84:101817.
GLADKOVA C,MASLEN S L,SKEHEL J M,et al. Mechanism of parkin activation by PINK1[J]. Nature,2018,559(7714):410-414.
QUINN P M J,MOREIRA P I,AMBRÓSIO A F,et al. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation[J]. Acta Neuropathol Commun,2020,8(1):189.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构