浏览全部资源
扫码关注微信
1.广东药科大学中药学院/广东省中药饮片规范化炮制工程技术研究中心,广州 510006
2.黑龙江中医药大学教育部北药基础与应用研究重点实验室/黑龙江省中药及天然药物药效物质基础研究重点实验室,哈尔滨 150040
硕士。研究方向:中药炮制学。E-mail:674039717@ qq.com
教授,博士。研究方向:中药炮制与药效物质基础。E-mail:qhwang668@sina.com
纸质出版日期:2023-08-15,
收稿日期:2023-01-30,
修回日期:2023-06-18,
扫 描 看 全 文
陈桂恩,邓雅方,邓婉柔等.基于PKA信号通路探讨胆南星对MPTP诱导帕金森病模型小鼠的保护作用 Δ[J].中国药房,2023,34(15):1809-1814.
CHEN Guien,DENG Yafang,DENG Wanrou,et al.Investigation on the protective effect of Arisaema Cum Bileon MPTP-induced Parkinson’s disease model mice based on PKA signaling pathway[J].ZHONGGUO YAOFANG,2023,34(15):1809-1814.
陈桂恩,邓雅方,邓婉柔等.基于PKA信号通路探讨胆南星对MPTP诱导帕金森病模型小鼠的保护作用 Δ[J].中国药房,2023,34(15):1809-1814. DOI: 10.6039/j.issn.1001-0408.2023.15.04.
CHEN Guien,DENG Yafang,DENG Wanrou,et al.Investigation on the protective effect of Arisaema Cum Bileon MPTP-induced Parkinson’s disease model mice based on PKA signaling pathway[J].ZHONGGUO YAOFANG,2023,34(15):1809-1814. DOI: 10.6039/j.issn.1001-0408.2023.15.04.
目的
2
探讨胆南星对帕金森病(PD)模型小鼠的改善作用及可能机制。
方法
2
将60只雄性C57BL/6J小鼠随机分为正常组、模型组、胆南星低剂量组[0.39 g/(kg·d)]、胆南星高剂量组[1.56 g/(kg·d)]和阳性对照药左旋多巴片组[80 mg/(kg·d)],每组12只。除正常组小鼠注射等体积生理盐水外,其余各组连续5 d腹腔注射1-甲基-4-苯基-1,2,3,6-四氢吡啶[MPTP,35 mg/(kg·d)]建立亚急性PD模型;造模完成后连续给药治疗7 d,于造模前1 d、造模第5天和末次给药后进行爬杆实验和线悬挂测试。采用免疫荧光法检测小鼠脑黑质中酪氨酸羟化酶(TH)阳性神经元数量;采用酶联免疫吸附法检测小鼠血清中白细胞介素1β(IL-1β)和肿瘤坏死因子α(TNF-α)水平以及脑黑质中IL-1β、TNF-α、环氧合酶2(COX-2)和诱导型一氧化氮合酶(iNOS)水平;采用Western blot法检测小鼠脑黑质中cAMP依赖的蛋白激酶催化亚单位α(PKA C-α)、谷胱甘肽过氧化物酶4(GPX4)以及铁蛋白重链多肽1(FTH1)蛋白的表达。
结果
2
末次给药后,与正常组比较,模型组小鼠爬杆时间显著延长(
P
<0.01),线悬挂评分显著降低(
P
<0.01),脑黑质中TH阳性神经元数量显著减少(
P
<0.01),血清中IL-1β、TNF-α水平和脑黑质中IL-1β、TNF-α、COX-2、iNOS水平显著升高(
P
<0.01),脑黑质中GPX4、PKA C-α和FTH1蛋白表达水平显著降低(
P
<0.05或
P
<0.01)。与模型组比较,胆南星高剂量组小鼠上述指标水平均显著回调(
P
<0.05或
P
<0.01)。
结论
2
胆南星能够改善MPTP诱导的PD模型小鼠运动能力障碍,减少脑黑质TH神经元死亡,对模型小鼠具有神经保护作用;这可能与其激活PKA信号通路来抑制神经炎症和神经元细胞铁死亡有关。
OBJECTIVE
2
To investigate the improvement effects of Arisaema Cum Bile on Parkinson’s disease (PD) model mice and its potential mechanism.
METHODS
2
Sixty male C57BL/6J mice were randomly divided into normal group, model group, Arisaema Cum Bile low-dose group [0.39 g/(kg·d)], Arisaema Cum Bile high-dose group [1.56 g/(kg·d)] and positive control drug Levodopa tablet group [80 mg/(kg·d)], with 12 mice in each group. Except that normal group was given constant volume of normal saline, other groups were given 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [MPTP,35 mg/(kg·d)] intraperitoneally for 5 consecutive days to induce subacute PD model; after modeling, they were given relevant medicine continuously for 7 d; rod climbing test and line suspension test were performed 1 d before modeling, on the 5th day of modeling and after the last medication. The number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra of mice were measured by immunofluorescence; the levels of interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) in serum and the levels of IL-1β, TNF-α, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in the substantia nigra of mice were measured by enzyme-linked immunosorbent assay. The expression levels of cAMP-dependent protein kinase catalytic subunit α (PKA C-α), glutathione peroxidase 4 (GPX4) and ferritin heavy chain polypeptide 1 (FTH1) proteins in the substantia nigra of mice was measured by Western blot.
RESULTS
2
After last medicine, compared with the normal group, mice in the model group had significantly longer pole-climbing time (
P
<0.01), significantly lower line suspension scores (
P
<0.01), significantly fewer TH-positive neurons in the substantia nigra (
P
<0.01), significantly higher serum concentrations of IL-1β and TNF-α and nigrostriatal concentrations of IL-1β, TNF-α, COX-2 and iNOS (
P
<0.01), while lower protein expression levels of GPX4, PKA C-α and FTH1 in the substantia nigra (
P
<0.05 or
P
<0.01). Compared with the model group, the above indexes of mice were significantly returned in Arisaema Cum Bile high-dose group (
P
<0.05 or
P
<0.01).
CONCLUSIONS
2
Arisaema Cum Bile can improve motor impairment and reduce apoptosis of nigrostriatal TH neurons in MPTP-induced PD mice, and has neuroprotective effects on model mice; this may be related to its inhibition of neuroinflammation and the inhibition of ferroptosis by up-regulating PKA signaling pathway.
胆南星帕金森病1-甲基-4-苯基-1,2,3,6-四氢吡啶cAMP依赖的蛋白激酶信号通路神经炎症铁死亡
Parkinson’s disease1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinecAMP-dependent protein kinase signaling pathwayneuroinflammationferroptosis
TYSNES O B,STORSTEIN A. Epidemiology of Parkinson’s disease[J]. J Neural Transm,2017,124(8):901-905.
HIRSCH E C,STANDAERT D G. Ten unsolved questions about neuroinflammation in Parkinson’s disease[J]. Mov Disord,2021,36(1):16-24.
MAHONEY-SÁNCHEZ L,BOUCHAOUI H,AYTON S,et al. Ferroptosis and its potential role in the physiopathology of Parkinson’s Disease[J]. Prog Neurobiol,2021,196:101890.
DIAS V,JUNN E,MOURADIAN M M. The role of oxidative stress in Parkinson’s disease[J]. J Parkinsons Dis,2013,3(4):461-491.
STEFANO A D,SOZIO P,CERASA L S,et al. L-dopa prodrugs:an overview of trends for improving Parkinson’s disease treatment[J]. Curr Pharm Des,2011,17(32):3482-3493.
雒晓东,李哲,朱美玲,等. 帕金森病(颤拘病)中医临床诊疗专家共识[J]. 中医杂志,2021,62(23):2109-2116.
唐照琦,李彪,王秋红,等. 胆南星的化学成分、药理作用及相关复方临床应用的研究进展[J]. 中国药房,2020,31(12):1523-1527.
张晶晶,马云枝. 马云枝分型论治帕金森病[J]. 湖北中医杂志,2016,38(10):26-27.
GUO C S,XIE S J,CHI Z X,et al. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome[J]. Immunity,2016,45(4):944.
GREGGIO E,BUBACCO L,RUSSO I. Cross-talk between LRRK2 and PKA:implication for Parkinson’s disease?[J]. Biochem Soc Trans,2017,45(1):261-267.
DAGDA R K,GUSDON A M,PIEN I,et al. Mitochon- drially localized PKA reverses mitochondrial pathology and dysfunction in a cellular model of Parkinson’s disease[J]. Cell Death Differ,2011,18(12):1914-1923.
LEE Y Y,PARK J S,LEEM Y H,et al. The phosphodie- sterase 10 inhibitor papaverine exerts anti-inflammatory and neuroprotective effects via the PKA signaling pathway in neuroinflammation and Parkinson’s disease mouse models[J]. J Neuroinflammation,2019,16(1):246.
吴真,刘怡,林丽. 胆南星炮制历史沿革与现代研究[J]. 中国现代中药,2020,22(11):1938-1943.
JACKSON-LEWIS V,PRZEDBORSKI S. Protocol for the MPTP mouse model of Parkinson’s disease[J]. Nat Protoc,2007,2(1):141-151.
LUCHTMAN D W,SHAO D,SONG C. Behavior,neurotransmitters and inflammation in three regimens of the MPTP mouse model of Parkinson’s disease[J]. Physiol Behav,2009,98(1/2):130-138.
HU X L,SONG Q,LI X,et al. Neuroprotective effects of Kukoamine A on neurotoxin-induced Parkinson’s model through apoptosis inhibition and autophagy enhancement[J]. Neuropharmacology,2017,117:352-363.
MEHTA S H,TANNER C M. Role of neuroinflammation in parkinson disease:the enigma continues[J]. Mayo Clin Proc,2016,91(10):1328-1330.
KO C J,GAO S L,LIN T K,et al. Ferroptosis as a major factor and therapeutic target for neuroinflammation in Parkinson’s disease[J]. Biomedicines,2021,9(11):1679.
TIAN Y,LU J,HAO X Q,et al. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease[J]. Neurotherapeutics,2020,17(4):1796-1812.
SMEYNE M,SMEYNE R J. Glutathione metabolism and Parkinson’s disease[J]. Free Radic Biol Med,2013,62:13-25.
0
浏览量
4
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构