浏览全部资源
扫码关注微信
1.华北理工大学药学院,河北 唐山 063210
2.军事医学研究院毒物药物研究所,北京 100850
硕士。研究方向:黏膜疫苗。E-mail:1549216916@ qq.com
研究员,博士。研究方向:纳米技术药物、仿生智能递药系统。电话:010-66931694。E-mail:apzheng@163.com
纸质出版日期:2023-08-30,
收稿日期:2023-04-18,
修回日期:2023-07-26,
扫 描 看 全 文
刘瑛琪,李静如,孟繁等.酵母微囊作为口服药物递送载体的研究进展 Δ[J].中国药房,2023,34(16):2022-2027.
LIU Yingqi,LI Jingru,MENG Fan,et al.Research progress of yeast microcapsules as oral drug delivery carrier[J].ZHONGGUO YAOFANG,2023,34(16):2022-2027.
刘瑛琪,李静如,孟繁等.酵母微囊作为口服药物递送载体的研究进展 Δ[J].中国药房,2023,34(16):2022-2027. DOI: 10.6039/j.issn.1001-0408.2023.16.20.
LIU Yingqi,LI Jingru,MENG Fan,et al.Research progress of yeast microcapsules as oral drug delivery carrier[J].ZHONGGUO YAOFANG,2023,34(16):2022-2027. DOI: 10.6039/j.issn.1001-0408.2023.16.20.
酵母微囊是一种表面粗糙多孔、核心中空的天然药物递送载体,具有良好的安全性和高靶向性、高稳定性,在口服药物递送系统中具有极佳的应用前景。酵母细胞经过酸碱和有机溶剂处理、洗涤后可获得疏松多孔的酵母微囊,后者可借助静电相互作用、被动扩散、疏水作用等方式包载药物。酵母微囊表面主要由
β
-葡聚糖组成,可在胃肠环境中保持稳定,可被免疫细胞表面相关受体识别,从而激活免疫反应,并可在被摄取后随淋巴细胞的运动将所载药物运送至病变部位。酵母微囊安全性高,非常适合递送疫苗、抗炎药物及抗肿瘤药物,其不仅可实现上述药物的口服递送,而且能增强药物效果,提高药物的靶向性。今后可开展更多全身转运机制的相关研究或开发更加高效的联合给药系统,以充分发挥酵母微囊的临床价值。
As a natural drug delivery carrier with rough and porous surface and hollow core, yeast microcapsules have good safety, high targeting and high stability, and have excellent application prospects in oral drug delivery systems. Yeast cells can be treated and washed with acid-base and organic solvents to obtain loose and porous yeast microcapsules. Yeast microcapsules can encapsulate drugs through electrostatic interactions, passive diffusion, hydrophobic interaction and other methods. The surface of yeast microcapsules is mainly composed of
β
-glucan, which can maintain stability in the gastrointestinal environment; it can be recognized by the surface-related receptors of immune cells, thus activating the immune response, and can be transported to the lesion site with the movement of lymphocytes after being ingested. Yeast microcapsules are safe and very suitable for delivering vaccines, anti-inflammatory drugs, and anti-tumor drugs. They can not only achieve oral delivery of the aforementioned drugs, but also enhance drug efficacy and improve drug targeting. In the future, more research on systemic transport mechanisms or the development of more efficient combination drug delivery systems can be carried out to fully exhibit the clinical value of yeast microcapsules.
酵母微囊β-葡聚糖药物递送载体口服药物
β-glucandrug delivery carrieroral drug
邢昊楠,陆梅,刘瑛琪,等. 基于外泌体的抗肿瘤药物靶向递送的研究进展[J]. 药学学报,2022,57(1):150-158,277.
张建军,高缘,孙婉瑾. 白蛋白作为药物载体的研究[J]. 化学进展,2011,23(8):1747-1754.
FAN K L,JIA X H,ZHOU M,et al. Ferritin nanocarrier traverses the blood brain barrier and kills glioma[J]. ACS Nano,2018,12(5):4105-4115.
COLLINS S M,BROWN A C. Bacterial outer membrane vesicles as antibiotic delivery vehicles[J]. Front Immunol,2021,12:733064.
LI W Q,WANG H M,XU X G,et al. Simultaneous nanoscale imaging of chemical and architectural heteroge-neity on yeast cell wall particles[J]. Langmuir,2020,36(22):6169-6177.
BERNARDI B,WENDLAND J. Homologous recombination:a GRAS yeast genome editing tool[J]. Fermentation,2020,6(2):57.
ÇELIK E,ÇALıK P. Production of recombinant proteins by yeast cells[J]. Biotechnol Adv,2012,30(5):1108-1118.
COHEN J L,SHEN Y F,AOUADI M,et al. Peptide- and amine-modified glucan particles for the delivery of therapeutic siRNA[J]. Mol Pharm,2016,13(3):964-978.
邵强,黄友解,韩月,等. 酵母细胞壁的结构组成、生物学功能及在养殖业中的应用[J]. 浙江畜牧兽医,2017,42(1):13-16.
BROWN G D,HERRE J,WILLIAMS D L,et al. Dectin-1 mediates the biological effects of beta-glucans[J]. J Exp Med,2003,197(9):1119-1124.
宿凡,管培竹,杨金波,等. β-葡聚糖与识别模式受体dectin-1相互作用研究进展[J].中国海洋药物,2019,38(5):54-60.
CABIB E,ARROYO J. How carbohydrates sculpt cells:chemical control of morphogenesis in the yeast cell wall[J]. Nat Rev Microbiol,2013,11(9):648-655.
TAN Y F,CHEN L W,LI K,et al. Yeast as carrier for drug delivery and vaccine construction[J]. J Control Release,2022,346:358-379.
AGUILAR-USCANGA B,FRANÇOIS J M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation[J]. Lett Appl Microbiol,2003,37(3):268-274.
UPADHYAY T K,FATIMA N,SHARMA D,et al. Preparation and characterization of beta-glucan particles containing a payload of nanoembedded rifabutin for enhanced targeted delivery to macrophages[J]. EXCLI J,2017,16:210-228.
SALOŇ I,HANUŠ J,ULBRICH P,et al. Suspension stability and diffusion properties of yeast glucan microparticles[J]. Food Bioprod Process,2016,99:128-135.
HOU Y Y,LIU R,HONG X Y,et al. Engineering a sustained release vaccine with a pathogen-mimicking manner for robust and durable immune responses[J]. J Control Release,2021,333:162-175.
AOUADI M,TESZ G J,NICOLORO S M,et al. Orally delivered siRNA targeting macrophage MAP4K4 suppresses systemic inflammation[J]. Nature,2009,458(7242):1180-1184.
SALARI R,BAZZAZ B S,RAJABI O,et al. New aspects of Saccharomyces cerevisiae as a novel carrier for berbe-rine[J]. Daru,2013,21(1):73.
MIRZA Z,SOTO E R,HU Y,et al. Anthelmintic activity of yeast particle-encapsulated terpenes[J]. Molecules,2020,25(13):2958.
SUN Y,DUAN B C,CHEN H H,et al. A novel strategy for treating inflammatory bowel disease by targeting deli-very of methotrexate through glucan particles[J]. Adv Healthc Mater,2020,9(6):e1901805.
SOTO E R,CARAS A C,KUT L C,et al. Glucan particles for macrophage targeted delivery of nanoparticles[J]. J Drug Deliv,2012,2012:143524.
SHI Q,ZHANG L,LIU M Y,et al. Reversion of multidrug resistance by a pH-responsive cyclodextrin-derived nanomedicine in drug resistant cancer cells[J]. Biomate-rials,2015,67:169-182.
SABU C,RAGHAV D,JIJITH U S,et al. Bioinspired oral insulin delivery system using yeast microcapsules[J]. Mater Sci Eng C Mater Biol Appl,2019,103:109753.
LELOUARD H,HENRI S,BOVIS B D,et al. Pathogenic bacteria and dead cells are internalized by a unique subset of Peyer’s patch dendritic cells that express lysozyme[J]. Gastroenterology,2010,138(1):173-184.e1-3.
WILLMENT J A,GORDON S,BROWN G D. Characte-rization of the human beta-glucan receptor and its alternatively spliced isoforms[J]. J Biol Chem,2001,276(47):43818-43823.
ROGERS N C,SLACK E C,EDWARDS A D,et al. Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C type lectins[J]. Immunity,2005,22(4):507-517.
GOODRIDGE H S,REYES C N,BECKER C A,et al. Activation of the innate immune receptor dectin-1 upon formation of a “phagocytic synapse”[J]. Nature,2011,472(7344):471-475.
CHAN G C F,CHAN W K,SZE D M Y. The effects of beta-glucan on human immune and cancer cells[J]. J Hematol Oncol,2009,2:25.
PARAYATH N N,NEHOFF H,MÜLLER P,et al. Styrene maleic acid micelles as a nanocarrier system for oral anticancer drug delivery: dual uptake through enterocytes and M-cells[J]. Int J Nanomedicine,2015,10:4653-4667.
HONG F,YAN J,BARAN J T,et al. Mechanism by which orally administered beta-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models[J]. J Immunol,2004,173(2):797-806.
SMET R D,DEMOOR T,VERSCHUERE S,et al. β-glucan microparticles are good candidates for mucosal antigen delivery in oral vaccination[J]. J Control Release,2013,172(3):671-678.
LIU D Q,LU S,ZHANG L,et al. A biomimetic yeast shell vaccine coated with layered double hydroxides induces a robust humoral and cellular immune response against tumors[J]. Nanoscale Adv,2020,2(8):3494-3506.
LIU H,JIA Z H,YANG C M,et al. Aluminum hydroxide colloid vaccine encapsulated in yeast shells with enhanced humoral and cellular immune responses[J]. Biomaterials,2018,167:32-43.
SPECHT C A,LEE C K,HUANG H B,et al. Protection against experimental cryptococcosis following vaccination with glucan particles containing Cryptococcus alkaline extracts[J]. mBio,2015,6(6):e01905-e01915.
SPECHT C A,LEE C K,HUANG H B,et al. Vaccination with recombinant Cryptococcus proteins in glucan particles protects mice against cryptococcosis in a manner dependent upon mouse strain and cryptococcal species[J]. mBio,2017,8(6):e01872-e01817.
HUANG H B,OSTROFF G R,LEE C K,et al. Characte-rization and optimization of the glucan particle-based vaccine platform[J]. Clin Vaccine Immunol,2013,20(10):1585-1591.
CHE L,ZHOU J Z,LI S H,et al. Assembled nanomedicines as efficient and safe therapeutics for articular inflammation[J]. Int J Pharm,2012,439(1/2):307-316.
ZHANG L,PENG H,ZHANG W,et al. Yeast cell wall particle mediated nanotube-RNA delivery system loaded with miR365 antagomir for post-traumatic osteoarthritis therapy via oral route[J]. Theranostics,2020,10(19):8479-8493.
PRADITYA D,KIRCHHOFF L,BRÜNING J,et al. Anti-infective properties of the golden spice curcumin[J]. Front Microbiol,2019,10:912.
YOUNG S,RAI R,NITIN N. Bioaccessibility of curcumin encapsulated in yeast cells and yeast cell wall particles[J]. Food Chem,2020,309:125700.
PLAVCOVÁ Z,ŠALAMÚNOVÁ P,SALOŇ I,et al. Curcumin encapsulation in yeast glucan particles promotes its anti-inflammatory potential in vitro[J]. Int J Pharm,2019,568:118532.
ZHOU X,LING K J,LIU M Y,et al. Targeted delivery of cisplatin-derived nanoprecursors via a biomimetic yeast microcapsule for tumor therapy by the oral route[J]. Thera-nostics,2019,9(22):6568-6586.
TENCEROVA M. Glucan-encapsulated siRNA particles(GeRPs)for specific gene silencing in Kupffer cells in mouse liver[J]. Methods Mol Biol,2020,2164:65-73.
REN T Y,GOU J X,SUN W X,et al. Entrapping of nanoparticles in yeast cell wall microparticles for macrophage-targeted oral delivery of cabazitaxel[J]. Mol Pharm,2018,15(7):2870-2882.
LI X N,ZHAO Z M,YANG Y H,et al. Novel β-1,3-D-glucan porous microcapsule enveloped folate-functionalized liposomes as a Trojan horse for facilitated oral tumor-targeted co-delivery of chemotherapeutic drugs and quantum dots[J]. J Mater Chem B,2020,8(11):2307-2320.
FATTAL-GERMAN M,BIZZINI B. Assessment of the anti-viral effect of a short-term oral treatment of mice with live Saccharomyces cerevisiae cells[J]. Dev Biol Stand,1992,77:115-120.
BEIER R,GEBERT A. Kinetics of particle uptake in the domes of Peyer’s patches[J]. Am J Physiol,1998,275(1):G130-G137.
WILLIAMS D L,MUELLER A,BROWDER W. Preclinical and clinical evaluation of carbohydrate immunopharmaceuticals in the prevention of sepsis and septic sequelae[J]. J Endotoxin Res,1995,2(3):203-208.
0
浏览量
7
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构