浏览全部资源
扫码关注微信
1.贵州中医药大学药学院,贵阳 550025
2.贵州医科大学药学院,贵阳 550025
硕士研究生。研究方向:中药新技术与新制剂。 E-mail:2039697100@qq.com
教授,博士生导师。研究方向:中药新技术与新制剂。电话:0851-88233005。E-mail:642771631@qq.com
纸质出版日期:2023-09-15,
收稿日期:2023-03-12,
修回日期:2023-08-06,
扫 描 看 全 文
张甘纯,刘文,宋信莉等.芍药甘草汤对急性肺损伤大鼠肠道菌群的影响 Δ[J].中国药房,2023,34(17):2063-2068.
ZHANG Ganchun,LIU Wen,SONG Xinli,et al.Effects of Shaoyao gancao decoction on intestinal flora in rats with acute lung injury[J].ZHONGGUO YAOFANG,2023,34(17):2063-2068.
张甘纯,刘文,宋信莉等.芍药甘草汤对急性肺损伤大鼠肠道菌群的影响 Δ[J].中国药房,2023,34(17):2063-2068. DOI: 10.6039/j.issn.1001-0408.2023.17.03.
ZHANG Ganchun,LIU Wen,SONG Xinli,et al.Effects of Shaoyao gancao decoction on intestinal flora in rats with acute lung injury[J].ZHONGGUO YAOFANG,2023,34(17):2063-2068. DOI: 10.6039/j.issn.1001-0408.2023.17.03.
目的
2
研究芍药甘草汤(SGD)对急性肺损伤(ALI)大鼠的改善作用及对肠道菌群的影响。
方法
2
将60只大鼠按随机数字表法分为正常组(CON组,生理盐水)、模型组(MOD组,生理盐水)、阳性对照组(DEX组,5 mg/kg地塞米松)和芍药甘草汤低、中、高剂量组(SGD-L、SGD-M、SGD-H组,给药剂量以生药量计分别为5.8、11.6、23.2 g/kg),每组10只。各组大鼠每天灌胃1次,灌胃体积均为10 mL/kg,连续7 d。末次灌胃30 min后,CON组大鼠气道滴注等体积生理盐水,其余各组大鼠气道滴注脂多糖(5 mg/kg)建立ALI模型。造模12 h后,计算大鼠肺组织湿/干重比,检测大鼠肺泡灌洗液(BALF)中白细胞介素1β(IL-1β)、IL-6和肿瘤坏死因子α(TNF-α)含量,以苏木素-伊红染色后观察肺组织病理形态学变化。采用16S rRNA测序技术分析大鼠粪便中菌群,并分析差异菌属与炎症因子的相关性。
结果
2
与MOD组比较,SGD各剂量组大鼠肺组织炎症细胞浸润均减少,肺泡隔增厚和肺泡水肿情况均有所改善;肺组织湿/干重比及BALF中IL-1β、IL-6、TNF-α水平均显著降低(
P
<0.05或
P
<0.01)。SGD(中剂量)可以改善ALI大鼠肠道菌群紊乱,恢复肠道菌群的多样性与丰富度,调节菌群结构,降低乳杆菌属、链球菌属和大肠埃氏菌属-志贺氏菌属的相对丰度,并增加厚壁菌属、毛螺菌属、瘤胃球菌属、梭状芽孢杆菌属、杜氏杆菌属和阿克曼菌属的相对丰度。相关性分析发现,乳杆菌属、链球菌属、大肠埃氏菌属-志贺氏菌属的相对丰度与炎症因子IL-1β、IL-6和TNF-α的水平呈显著正相关(
P
<0.05或
P
<0.01);毛螺菌属、杜氏杆菌属、厚壁菌属的相对丰度与上述炎症因子的水平呈显著负相关(
P
<0.05或
P
<0.01)。
结论
2
SGD可能通过减轻大鼠肺组织损伤和炎症反应、调节菌群结构来改善ALI。
OBJECTIVE
2
To study the improvement effects of Shaoyao gancao decoction (SGD) on acute lung injury (ALI) in rats and its effects on the intestinal flora.
METHODS
2
Sixty SD rats were randomly divided into normal group (CON group, normal saline), model group (MOD group, normal saline), positive control group (DEX group, 5 mg/kg dexamethasone), SGD low-dose, medium-dose and high-dose groups (SGD-L, SGD-M, SGD-H groups, 5.8, 11.6, 23.2 g/kg, calculated by crude drug), with 10 rats in each group. Each group was given relevant medicine 10 mL/kg intragastrically, for 7 consecutive days. Thirty minutes after the last administration, CON group was given constant volume of normal saline via airway infusion, and other groups were given lipopolysaccharide (5 mg/kg) via airway infusion to induce ALI model. After 12 hours of modeling, the lung tissue wet/dry weight ratio was calculated, and the contents of interleukin 1β (IL-1β), IL-6 and tumor necrosis factor α(TNF-α) in rat bronchial alveolar lavage fluid (BALF) were all detected; the pathological changes of lung tissue were observed after hematoxylin-eosin staining. The intestinal flora of rat feces was analyzed by 16S rRNA sequencing technology, and the correlation of differential bacteria genera with inflammatory factors was also analyzed.
RESULTS
2
Compared with MOD group, the infiltration of inflammatory cells in the lung tissue of rats in each SGD dose group was decreased, and the thickening of alveolar septum and pulmonary edema improved; lung tissue wet/dry weight ratio, the levels of IL-1β, IL-6 and TNF-α in BALF significantly decreased (
P
<0.05 or
P
<0.01). SGD (low dose) could improve the intestinal flora disorder in ALI rats, restore the diversity and richness of intestinal flora, regulate the structure of flora, reduce the abundance of
Lactobacillus, Streptococcus and Escherichia-Shigella
, and increase the abundance of
Firmicutes, Lachnospira
,
Ruminococcus
,
Clostridia
,
Dubosiella and Akkermansia
. Through correlation analysis, it was found that the relative abundance of
Lactobacillus
,
Streptococcus
and
Escherichia-Shigella
was positively related to the levels of inflammatory factor IL-1β, IL-6 and TNF-α (
P
<0.05 or
P
<0.01). The relative abundance of
Lachnospira
,
Dubosiella
,
Firmicutes
was significantly negatively correlated with the levels of inflammatory factors mentioned above (
P
<0.05 or
P
<0.01).
CONCLUSIONS
2
SGD may improve ALI by reducing lung tissue injury and inflammatory response and regulating flora structure in rats.
芍药甘草汤急性肺损伤肠道菌群16S rRNA测序炎症反应
acute lung injuryintestinal flora16S rRNA sequencinginflammatory response
MATTEW E L, RAMA K M, JEFFREY C H. Pathoge- nesis of pneumonia and acute lung injury[J]. Cli Sci (Lond),2022,136(10):747-769.
BUTT Y,KURDOWSKA A,ALLEN T C. Acute lung injury:a clinical and molecular review[J]. Arch Pathol Lab Med,2016,140(4):345-350.
王凯,刘小虹. 喘可治对小鼠急性肺损伤TLR4/NF-κB/NLRP3通路的影响[J]. 中国实验方剂学杂志,2017,23(22):143-148.
卢悦,张平平,王东强,等. 急性肺损伤中医病因病机的探讨[J]. 中国中医急症,2020,29(2):280-282.
张保国,刘庆芳. 芍药甘草汤临床研究与新用[J]. 中成药,2012,34(9):1774-1777.
王憭瑶,李宣霖,王海峰,等.肠道微生物与呼吸系统疾病的相关性[J].中华中医药学刊,2019,37(8):1859-1861.
ANAND S,MANDE S S. Diet,microbiota and gut-lung connection[J]. Front Microbiol,2018,9:2147.
DICKSON R P,SINGER B H,NEWSTEAD M W,et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome[J]. Nat Microbiol,2016,1(10):16113.
陈平,曾瑾,杨安东,等.古代经典名方芍药甘草汤的处方及关键信息考证[J].中药药理与临床,2022,38(6):195-203.
夏金婵,从人愿,袁静,等. 黄芩苷通过p38 MAPK/NLRP3通路对脂多糖诱导大鼠急性肺损伤的影响[J]. 中国实验方剂学杂志,2022,28(2):79-86.
王梓宇,张智慧,吴鹏,等. 基于肠道菌群和短链脂肪酸代谢探讨甘草制远志降低肠道炎症的作用机制[J]. 中草药,2023,54(14):4556-4563.
JIANG C,ZHANG J C,XIE H W,et al. Baicalein suppresses lipopolysaccharide-induced acute lung injury by regulating Drp1-dependent mitochondrial fission of macro- phages[J]. Biomed Pharmacother,2022,145:112408.
张瑾,李秀敏,苗明三. 基于中西医临床病证特点的急性肺损伤动物模型分析[J]. 中药药理与临床,2022,38(5):148-152.
GEISER T,ATABAI K,JARREAU P H,et al. Pulmonary edema fluid from patients with acute lung injury augments in vitro alveolar epithelial repair by an IL-1beta-dependent mechanism[J]. Am J Respir Crit Care Med,2001,163(6):1384-1388.
GIEBELEN I A,VAN WESTERLOO D J,LAROSA G J,et al. Local stimulation of alpha7 cholinergic receptors inhibits LPS-induced TNF-alpha release in the mouse lung[J]. Shock,2007,28(6):700-703.
PARK W Y,GOODMAN R B,STEINBERG K P,et al. Cytokine balance in the lungs of patients with acute respiratory distress syndrome[J]. Am J Respir Crit Care Med,2001,164(10 Pt 1):1896-1903.
KOLB M,MARGETTS P J,ANTHONY D C,et al. Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis[J]. J Clin Invest,2001,107(12):1529-1536.
刘畅,刘雄伟,李嘉欣,等. 基于16S rRNA基因测序研究金银花和山银花对急性肺损伤大鼠肠道菌群的影响[J]. 中国微生态学杂志,2021,33(2):130-137.
邓贵凤. 芍药甘草汤通过重塑肠道菌群调节TLR4/NF-κB信号通路改善多囊卵巢综合征的作用机制研究[D]. 太原:山西医科大学,2021.
钟海. 三叶苷对LPS诱导急性肺损伤小鼠的保护作用及机理研究[D]. 广州:南方医科大学,2021.
LI W,DING Z H,CHEN Y,et al. Integrated pharmaco- logy reveals the molecular mechanism of Gegen qinlian decoction against lipopolysaccharide-induced acute lung injury[J]. Front Pharmacol,2022,13:854544.
王平,赵澄,卢芳国,等. 麻杏石甘汤对流感病毒感染小鼠肠道菌群及趋化因子CCL5、CXCL10的影响[J]. 中草药,2021,52(1):160-175.
BOWERMAN K L,REHMAN S F,VAUGHAN A,et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease[J]. Nat Commun,2020,11(1):5886.
CHANG Z P,DENG G F,SHAO Y Y,et al. Shaoyao-Gancao Decoction ameliorates the inflammation state in polycystic ovary syndrome rats via remodeling gut microbiota and suppressing the TLR4/NF-κB pathway[J]. Front Pharmacol,2021,12:670054.
SANADA T J,HOSOMI K,SHOJI H,et al. Gut microbiota modification suppresses the development of pulmonary arterial hypertension in an SU5416/hypoxia rat model[J]. Pulm Circ,2020,10(3):2045894020929147.
MA P J,WANG M M,WANG Y. Gut microbiota:a new insight into lung diseases[J]. Biomed Pharmacother,2022,155:113810.
0
浏览量
11
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构