浏览全部资源
扫码关注微信
新疆医科大学药学院,乌鲁木齐 830011
硕士。研究方向:活性多糖的开发与应用。E-mail:ndrm27@foxmail.com
教授,硕士生导师,博士。研究方向:天然药用资源的开发与应用。E-mail:congyyxj@126.com
纸质出版日期:2024-10-30,
收稿日期:2024-04-24,
修回日期:2024-08-07,
移动端阅览
娜迪热木·肖克拉提 ,俞永婷,卢泳强等.胀果甘草粗多糖及其纯化多糖对树突状细胞成熟和抗肿瘤作用的影响及机制 Δ[J].中国药房,2024,35(20):2453-2459.
Nadiremu·Xiaokelati ,YU Yongting,LU Yongqiang,et al.Effects and mechanism of Glycyrrhiza inflata polysaccharides on the maturation and anti-tumor effect of dendritic cell[J].ZHONGGUO YAOFANG,2024,35(20):2453-2459.
娜迪热木·肖克拉提 ,俞永婷,卢泳强等.胀果甘草粗多糖及其纯化多糖对树突状细胞成熟和抗肿瘤作用的影响及机制 Δ[J].中国药房,2024,35(20):2453-2459. DOI: 10.6039/j.issn.1001-0408.2024.20.02.
Nadiremu·Xiaokelati ,YU Yongting,LU Yongqiang,et al.Effects and mechanism of Glycyrrhiza inflata polysaccharides on the maturation and anti-tumor effect of dendritic cell[J].ZHONGGUO YAOFANG,2024,35(20):2453-2459. DOI: 10.6039/j.issn.1001-0408.2024.20.02.
目的
2
研究胀果甘草粗多糖(GiP)及其纯化多糖GiP-B1对荷瘤小鼠树突状细胞(DC)成熟和抗肿瘤作用的影响及机制。
方法
2
将体外培养的肝癌细胞H22荷瘤小鼠未成熟DC(imDC)分为对照组、肿瘤坏死因子α(TNF-α)组、GiP组及GiP-B1组,检测荷瘤小鼠成熟DC(mDC)的细胞活力,表面标志物(CD11c、CD80、CD86、MHC-Ⅱ)阳性表达率,白细胞介素12p70(IL-12p70)及IL-4水平;通过荷瘤小鼠mDC与CD4
+
T淋巴细胞共培养生成CD4-细胞毒性T细胞(CD4-CTL),检测刺激指数,CD4-CTL上清液中IL-12p70、干扰素-γ(IFN-γ)、IL-4、IL-10水平及对H22细胞的杀伤活性;检测共培养后荷瘤小鼠mDC中IL-12、IL-12受体(IL-12R)、信号转导和转录激活因子4(STAT-4)mRNA表达量,以及IL-12Rβ2蛋白表达量,核转录因子κB(NF-κB)p65、STAT-4蛋白磷酸化水平。
结果
2
与对照组比较,GiP组与GiP-B1组荷瘤小鼠mDC细胞活力、MHC-Ⅱ阳性表达率以及IL-12p70、IL-4水平均显著升高(
P
<0.05),CD11c、CD80、CD86阳性表达率均有升高趋势,但差异均无统计学意义(
P
>0.05)。共培养后刺激指数、IL-12p70、IFN-γ水平均显著升高(
P
<0.05),IL-4、IL-10(GiP组除外)水平均显著降低(
P
<0.05),对H22细胞的杀伤活性均显著增强(
P
<0.05);荷瘤小鼠mDC中
IL-12、IL-12R(GiP组除外)、STAT-4 mRNA表达量,IL-12Rβ2蛋白表达量以及NF-κB p65、STAT-4蛋白磷酸化水平均显著升高(
P
<0.05)。
结论
2
GiP及GiP-B1对荷瘤小鼠DC的成熟有较好的促进作用,能有效刺激CD4
+
T细胞增殖并增强CD4-CTL的抗肿瘤活性,其作用机制可能与激活IL-12/NF-κB/STAT-4信号通路有关。
OBJECTIVE
2
To investigate the effects and mechanism of
Glycyrrhiza inflata
polysaccharides (GiP) and GiP-B1 on the maturation and anti-tumor effect of dendritic cell (DC).
METHODS
2
The immature DC (imDC) of hepatocellular carcinoma cell H22 tumor-bearing mice cultured
in vitro
were divided into control group, tumor necrosis factor-α (TNF-α) group, GiP group, and GiP-B1 group. The viability, positive expressions of surface markers (CD11c, CD80, CD86, MHC-Ⅱ), the levels of interleukin-12p70 (IL-12p70) and IL-4 in mature DC (mDC) of tumor-bearing mice were detected. mDC and CD4
+
T lymphocytes were co-cultured to generate CD4-cytotoxic T cell (CD4-CTL); stimulation index, the levels of IL-12p70, interferon-γ (IFN-γ), IL-4 and IL-10, the killing activity of CD4-CTL to H22 cell were detected. mRNA expressions of IL-12, IL-12 receptor (IL-12R), signal transducer and activator of transcription-4 (STAT-4), as well as the protein expression of IL-12 receptor β2 (IL-12Rβ2), phosphorylation levels of nuclear factor-kappa B (NF-κB) p65 and STAT-4 proteins in mDC were detected after co-culture.
RESULTS
2
Compared with the control group, the viability of mDC, the positive expressions of MHC-Ⅱ, and the levels of IL-12p70 and IL-4 were increased significantly in GiP group and GiP-B1 group (
P
<0.05). The positive expressions of CD11c, CD80 and CD86 showed an increasing trend, but the differences were not statistically significant (
P
>0.05). After co-culturing, the stimulation index, the levels of IL-12p70 and IFN-γ were significantly increased (
P
<0.05), while the levels of IL-4 and IL-10 (except for the GiP group) were significantly decreased (
P
<0.05); the cytotoxicity against H22 cells was significantly enhanced (
P
<0.05). mRNA expressions of IL-12 and IL-12R (except for GiP group) and STAT-4, protein expression of IL-12Rβ2 as well as phosphorylation levels of NF-κB p65 and STAT-4 protein were increased significantly in mDC (
P
<0.05).
CONCLUSIONS
2
GiP and GiP-B1 have a good promoting effect on the maturation of DC in tumor-bearing mice, effectively stimulate CD4
+
T cell proliferation, enhance the anti-tumor activity of CD4-CTL, and its mechanism may be related to activating IL-12/NF-κB/STAT-4 signaling pathway.
胀果甘草多糖树突状细胞IL-12/NF-κB/STAT-4信号通路细胞毒性T淋巴细胞抗肿瘤
dendritic cellIL-12/NF-κB/STAT-4 signaling pathwaycytotoxic T lymphocytesanti-tumor
ANWANWAN D,SINGH S K,SINGH S,et al. Challenges in liver cancer and possible treatment approaches[J]. Biochim Biophys Acta Rev Cancer,2020,1873(1):188314.
IGARASHI Y,SASADA T. Cancer vaccines:toward the next breakthrough in cancer immunotherapy[J]. J Immunol Res,2020,2020:5825401.
李兴航. 树突状细胞疫苗的研究进展[J]. 中国生物制品学杂志,2022,35(10):1242-1248.
LI X H. Progress in research on dendritic cell vaccines[J]. Chin J Biol,2022,35(10):1242-1248.
GUPTA Y H,KHANOM A,ACTON S E. Control of dendritic cell function within the tumour microenvironment[J]. Front Immunol,2022,13:733800.
HAAS N D,KONING C D,BLASIO S D,et al. Stat family protein expression and phosphorylation state during moDC development is altered by platinum-based chemotherapeutics[J]. J Immunol Res,2019,2019:7458238.
陈橙. 胀果甘草多糖对树突状细胞表型和功能的影响及作用机制的初步研究[D]. 乌鲁木齐:新疆医科大学,2019.
CHEN C. Effects of Glycyrrhiza inflata polysaccharides on phenotype and function of dendritic cells and their preliminary mechanism study [D]. Urumqi:Xinjiang Medical University,2019.
俞永婷,娜迪热木·肖克拉提,卢泳强,等. 胀果甘草多糖佐助的树突状细胞疫苗对H22肝癌荷瘤小鼠的免疫治疗作用[J]. 中国医院药学杂志,2024,44(1):35-41.
YU Y T,NADIREMU·XIAOKELATI,LU Y Q,et al. Immunotherapeutic effect of dendritic cell vaccine assisted by Glycyrrhiza inflata polysaccharides in H22 hepatoma-bearing mice[J]. Chin J Hosp Pharm,2024,44(1):35-41.
陈橙,帕丽达·阿不力孜,米仁沙·牙库甫,等. 胀果甘草酸性多糖的分离纯化、结构分析及免疫活性测定[J]. 食品安全质量检测学报,2017,8(12):4651-4658.
CHEN C,PALIDA·ABULIZI,MIRENSHA·YAKUFU,et al. Isolation,purification,structural analysis and immune activity determination of acid polysaccharides from Glycyrrhiza inflata Bat[J]. J Food Saf Qual,2017,8(12):4651-4658.
孙冲. 腹腔注射树突状细胞肿瘤疫苗免疫治疗小鼠骨肉瘤的实验研究[D]. 济南:山东大学,2018.
SUN C. Experimental study on immunotherapy of mouse osteosarcoma by intraperitoneal injection of dendritic cell tumor vaccine[D]. Jinan:Shandong University,2018.
王灿,董闪闪,王自强,等. 鹿瓜多肽体外活性测定方法的探讨研究[J]. 药物分析杂志,2018,38(7):1196-1201.
WANG C,DONG S S,WANG Z Q,et al. Research on the method for determining the in vitro activity of Cervus and Cucumis polypeptide[J]. Chin J Pharm Anal,2018,38(7):1196-1201.
谢如欣. 多糖抗肿瘤免疫调节机制的研究进展[J]. 现代医药卫生,2019,35(24):3798-3801.
XIE R X. Research progress on anti-tumor immunomodulatory mechanism of polysaccharide[J]. J Mod Med Health,2019,35(24):3798-3801.
WEI Y,WANG L W,WANG D J,et al. Characterization and anti-tumor activity of a polysaccharide isolated from Dendrobium officinale grown in the Huoshan County[J]. Chin Med,2018,13:47.
刘亚楠,杨皓凯,闫亚娟,等. 枸杞多糖通过MGL/TLR信号通路调控巨噬细胞RAW264.7的活化[J]. 中国实验方剂学杂志,2023,29(11):106-112.
LIU Y N,YANG H K,YAN Y J,et al. Lycium barbarum polysaccharide regulates activation of RAW264.7 macrophages through MGL/TLR pathway[J]. Chin J Exp Tradit Med Formulae,2023,29(11):106-112.
BAMODU O A,KUO K T,WANG C H,et al. Astragalus polysaccharides(PG2)enhances the M1 polarization of macrophages,functional maturation of dendritic cells,and T cell-mediated anticancer immune responses in patients with lung cancer[J]. Nutrients,2019,11(10):2264.
LIU S N,YANG Y,QU Y,et al. Structural characterization of a novel polysaccharide from Panax notoginseng residue and its immunomodulatory activity on bone marrow dendritic cells[J]. Int J Biol Macromol,2020,161:797-809.
HU Y Y,HE Y,NIU Z Q,et al. A review of the immunomodulatory activities of polysaccharides isolated from Panax species[J]. J Ginseng Res,2022,46(1):23-32.
李香颖,林乐珍,蓝焱焱,等. 罗汉松实多糖对小鼠肝癌H22细胞移植瘤生长的影响及其机制[J]. 山东医药,2022,62(36):44-49.
LI X Y,LIN L Z,LAN Y Y,et al. Effect of polysaccharide from PSP on growth of xenograft tumor in mouse liver cancer H22 cells[J]. Shandong Med J,2022,62(36):44-49.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构